Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:
| Zufallsgröße X | -2 | -1 | 0 | 1 | 2 |
| zugehörige Ereignisse | 1 - 3 | 1 - 2 2 - 3 | 1 - 1 2 - 2 3 - 3 | 2 - 1 3 - 2 | 3 - 1 |
Zufallsgröße WS-Verteilung
Beispiel:
Drei normale Würfel werden gleichzeitig geworfen. Die Zufallsgröße X beschreibt die Anzahl der gewürfelten 6er. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Anzahl der 6er' sind folgende Werte möglich:
| Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
| zugehörige Ergebnisse | 0 → 0 → 0 | 0 → 0 → 1 0 → 1 → 0 1 → 0 → 0 | 0 → 1 → 1 1 → 0 → 1 1 → 1 → 0 | 1 → 1 → 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
| Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
| zugehörige Wahrscheinlichkeit P(X) | ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ |
| = | + + | + + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
| Zufallsgröße X | 0 | 1 | 2 | 3 |
| P(X=k) |
Zufallsgr. WS-Vert. (auch ohne zur.)
Beispiel:
In einem Kartenstapel sind nur noch zwei Karten mit dem Wert 4, zwei Karten mit dem Wert 6 und zwei 8er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen dem größeren und dem kleineren Wert der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Differenz der beiden Karten' sind folgende Werte möglich:
| Zufallsgröße X | X = 0 | X = 2 | X = 4 |
| zugehörige Ergebnisse | 4 → 4 6 → 6 8 → 8 | 4 → 6 6 → 4 6 → 8 8 → 6 | 4 → 8 8 → 4 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
| Zufallsgröße X | X = 0 | X = 2 | X = 4 |
| zugehörige Wahrscheinlichkeit P(X) | ⋅ + ⋅ + ⋅ | ⋅ + ⋅ + ⋅ + ⋅ | ⋅ + ⋅ |
| = | + + | + + + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
| Zufallsgröße X | 0 | 2 | 4 |
| P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Aus einem Kartenstapel mit 12 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
| Zufallsgröße X | 1 | 2 | 3 |
| P(X=k) |
Zufallsgröße rückwärts
Beispiel:
Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei die Summe der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?
| Zufallsgröße X | 2 | 3 | 4 | 5 | 6 |
| P(X=k) | ? | ? | ? |
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für X=2 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=2) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=2) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=6 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.
Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=6) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=6) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = =
Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p =
Somit erhalten wir:
α1 = ⋅ 360° = 50°
α2 = ⋅ 360° = 50°
α3 = ⋅ 360° = 260°
Erwartungswerte
Beispiel:
Ein Spieler darf aus einer Urne mit 3 blauen, 10 roten, 4 grünen und 3 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 20€. Bei rot erhält er 12€, bei grün erhält er 30€ und bei weiß erhält er 40€. Wieviel bringt ein Zug durchschnittlich ein?
Die Zufallsgröße X beschreibt den ausbezahlten €-Euro-Betrag.
Erwartungswert der Zufallsgröße X
| Ereignis | blau | rot | grün | weiß |
| Zufallsgröße xi | 20 | 12 | 30 | 40 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 20⋅ + 12⋅ + 30⋅ + 40⋅
=
=
Faires Spiel - fehlende Auszahlung best.
Beispiel:
Ein Spieler darf aus einer Urne mit 8 blauen, 7 roten, 3 grünen und 6 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 12€. Bei rot erhält er 24€ und bei grün erhält er 40€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 18€ beträgt ?
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
| Ereignis | blau | rot | grün | weiß |
| Zufallsgröße xi | 12 | 24 | 40 | x |
| Zufallsgröße yi (Gewinn) | -6 | 6 | 22 | x-18 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) | ⋅ x | |||
| yi ⋅ P(Y=yi) | ⋅(x-18) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 18
= 18
= 18| = | |||
| = | |⋅ 4 | ||
| = | |||
| = | | | ||
| = |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0| = | |||
| = | |||
| = | |⋅ 4 | ||
| = | |||
| = | | | ||
| = |
In beiden Fällen ist also der gesuchte Betrag: 8€
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
- Das Spiel mit dem Glücksrad muss fair sein
- Der Einsatz soll 9€ betragen
- Der minimale Auszahlungsbetrag soll 1€ sein
- Der maximale Auszahlungsbetrag soll soll 13€ sein
- Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 1 | 13 | ||
| Y Gewinn (Ausz. - Einsatz) | -8 | 4 | ||
| P(X) = P(Y) | ||||
| Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 1 | 13 | ||
| Y Gewinn (Ausz. - Einsatz) | -8 | 4 | ||
| P(X) = P(Y) | ||||
| Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 1 | 13 | ||
| Y Gewinn (Ausz. - Einsatz) | -8 | 4 | ||
| P(X) = P(Y) | ||||
| Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
| Feld1 | Feld2 | Feld3 | Feld4 | |
| X (z.B. Auszahlung) | 1 | 5 | 13 | 13 |
| Y Gewinn (Ausz. - Einsatz) | -8 | -4 | 4 | 4 |
| P(X) = P(Y) | ||||
| Winkel | 45° | 112.5° | 112.5° | 90° |
| Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -8⋅ + -4⋅ + 4⋅ + 4⋅
=
=
=
=
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
In einer Urne sind 10 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 5-ten Versuch st:
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.
Erwartungswert der Zufallsgröße X
| Ereignis | 1 | 2 | 3 | 4 | 5 |
| Zufallsgröße xi | 1 | 2 | 3 | 4 | 5 |
| P(X=xi) | |||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅ + 4⋅ + 5⋅
=
=
=
=
≈ 1.36
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 4 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| As -> As -> As | |
| As -> As -> andereKarte | |
| As -> andereKarte -> As | |
| As -> andereKarte -> andereKarte | |
| andereKarte -> As -> As | |
| andereKarte -> As -> andereKarte | |
| andereKarte -> andereKarte -> As | |
| andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
| Ereignis | 0 | 1 | 2 | 3 |
| Zufallsgröße xi | 0 | 10 | 20 | 30 |
| P(X=xi) | ||||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
=
=
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
| Ereignis | P |
|---|---|
| Blume -> Blume | |
| Blume -> Raute | |
| Blume -> Stein | |
| Blume -> Krone | |
| Raute -> Blume | |
| Raute -> Raute | |
| Raute -> Stein | |
| Raute -> Krone | |
| Stein -> Blume | |
| Stein -> Raute | |
| Stein -> Stein | |
| Stein -> Krone | |
| Krone -> Blume | |
| Krone -> Raute | |
| Krone -> Stein | |
| Krone -> Krone |
Die Wahrscheinlichkeit für '2 gleiche' ist:
P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= + + =
Die Wahrscheinlichkeit für '1 Krone' ist:
P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= + + + + + =
Die Wahrscheinlichkeit für '2 Kronen' ist:
P('Krone'-'Krone')
=
Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.
Erwartungswert der Zufallsgröße X
| Ereignis | 2 gleiche | 1 Krone | 2 Kronen |
| Zufallsgröße xi | 3 | 4 | 20 |
| P(X=xi) | |||
| xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 3⋅ + 4⋅ + 20⋅
=
=
=
≈ 1.98
