Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 6 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 1 : 6 ≈ 0.167
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.167 = 16.7%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 20 Kugeln, die mit Zahlen 1 bis 20 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Primzahlen zwischen 1 und 20 suchern, finden wir:
{2, 3, 5, 7, 11, 13, 17, 19}, also insgesamt
8 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(Primzahl) = =
Als Dezimalzahl ergibt das: P(Primzahl) = = 2 : 5 ≈ 0.4
Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.4 = 40%
Zufallsexperiment (einstufig)
Beispiel:
In einer Klasse besuchen 9 Schülerinnen und Schüler den römisch-katholischen Religionsunterricht, 4 den evangelischen, und 7 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 9 + 4 + 7=20
Hieraus ergibt sich für ...
rk: p=
ev: p= =
Eth: p=
mit Zurücklegen (einfach)
Beispiel:
Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal Wappen"?
Da ja ausschließlich nach 'Wappen' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Wappen' und 'nicht Wappen'
Einzel-Wahrscheinlichkeiten :"Wappen": ; "nicht Wappen": ;
Ereignis | P |
---|---|
Wappen -> Wappen -> Wappen | |
Wappen -> Wappen -> nicht Wappen | |
Wappen -> nicht Wappen -> Wappen | |
Wappen -> nicht Wappen -> nicht Wappen | |
nicht Wappen -> Wappen -> Wappen | |
nicht Wappen -> Wappen -> nicht Wappen | |
nicht Wappen -> nicht Wappen -> Wappen | |
nicht Wappen -> nicht Wappen -> nicht Wappen |
Einzel-Wahrscheinlichkeiten: P("Wappen")=; P("nicht Wappen")=;
Die relevanten Pfade sind:- 'Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'Wappen'-'nicht Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'Wappen' (P=)
- 'nicht Wappen'-'nicht Wappen'-'nicht Wappen' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 9 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?
Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'
Einzel-Wahrscheinlichkeiten :"blau": ; "nicht blau": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'blau')=1- =
Ereignis | P |
---|---|
blau -> blau -> blau | |
blau -> blau -> nicht blau | |
blau -> nicht blau -> blau | |
blau -> nicht blau -> nicht blau | |
nicht blau -> blau -> blau | |
nicht blau -> blau -> nicht blau | |
nicht blau -> nicht blau -> blau | |
nicht blau -> nicht blau -> nicht blau |
Einzel-Wahrscheinlichkeiten: P("blau")=; P("nicht blau")=;
Die relevanten Pfade sind:- 'blau'-'nicht blau'-'nicht blau' (P=)
- 'nicht blau'-'blau'-'nicht blau' (P=)
- 'nicht blau'-'nicht blau'-'blau' (P=)
- 'blau'-'blau'-'nicht blau' (P=)
- 'blau'-'nicht blau'-'blau' (P=)
- 'nicht blau'-'blau'-'blau' (P=)
- 'blau'-'blau'-'blau' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + + + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?
Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'
Einzel-Wahrscheinlichkeiten :"Ass": ; "nicht Ass": ;
Ereignis | P |
---|---|
Ass -> Ass | |
Ass -> nicht Ass | |
nicht Ass -> Ass | |
nicht Ass -> nicht Ass |
Einzel-Wahrscheinlichkeiten: P("Ass")=; P("nicht Ass")=;
Die relevanten Pfade sind:
'Ass'-'Ass' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten gleichzeitig aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?
Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'
Einzel-Wahrscheinlichkeiten :"9": ; "nicht 9": ;
Ereignis | P |
---|---|
9 -> 9 | |
9 -> nicht 9 | |
nicht 9 -> 9 | |
nicht 9 -> nicht 9 |
Einzel-Wahrscheinlichkeiten: P("9")=; P("nicht 9")=;
Die relevanten Pfade sind:
'9'-'9' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
nur Summen
Beispiel:
In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
Ereignis | P |
---|---|
3 -> 3 | |
3 -> nicht 3 | |
nicht 3 -> 3 | |
nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:- '3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 21 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Ereignis | P |
---|---|
Teiler -> Teiler | |
Teiler -> kein Teiler | |
kein Teiler -> Teiler | |
kein Teiler -> kein Teiler |
Einzel-Wahrscheinlichkeiten: P("Teiler")=; P("kein Teiler")=;
Die relevanten Pfade sind:- 'kein Teiler'-'kein Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=