Aufgabenbeispiele von Bewegungsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


nach x Minuten

Beispiel:

Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (-40|40|10) (alle Angaben in Meter). Nach 4min ist er im Punkt B (-280|-240|250) angelangt.
Wie hoch ist die Geschwindigkeit des Heißluftballons in km/h?
An welchem Ort befindet sich der Heißluftballon nach 9min?
Wie weit ist der Heißluftballon dann geflogen?
Berechne den Winkel mit dem der Heißluftballon steigt?
Wann hat er die Höhe von 2890m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( -240 -280 240 ) zurück.
In 1min legt es also den Vektor 1 4 ( -240 -280 240 ) = ( -60 -70 60 ) zurück. Dieser Vektor hat die Länge = (-60) 2 + (-70)2 + 60 2 = 12100 = 110.
Die Geschwindigkeit ist also v=110 m min = 6.6 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( -40 40 10 ) +t ( -60 -70 60 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 min befindet es sich also im Punkt mit dem Ortsvektor
OP = ( -40 40 10 ) +9 ( -60 -70 60 ) = ( -580 -590 550 ) , also im Punkt P(-580|-590|550).

Das Bewegungsobjekt hat sich dann von A(-40|40|10) nach P(-580|-590|550) bewegt, also um den Vektor AP = ( -540 -630 540 ) . Dessen Länge ist (-540) 2 + (-630)2 + 540 2 = 980100 = 990 (in m).

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( -60 -70 60 ) ( 0 0 1 ) | | ( -60 -70 60 ) | | ( 0 0 1 ) | = | (-60)0 + (-70)0 + 601 | (-60) 2 + (-70)2 + 60 2 0 2 + 02 + 1 2
= | 60 | 12100 1 0.5455 => α=33.1°

In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 60m (Änderung in der x3-Koordinate). Um von 10 auf 2890m (also 2880m) zu steigen (bzw. fallen), muss es also 2880 60 min = 48min lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A (1|-3|654) in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 39,6km/h in Richtung des Punktes B (-20|15|636) (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Wann hat sie die (absolute) Höhe von 528m erreicht?
In welchem Punkt befindet die sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 39600 m 3600 s = 11 m s .
Die Länge des Vektors AB = ( -21 18 -18 ) ist (-21) 2 + 182 + (-18) 2 = 1089 = 33 (in m).
Bei einer Geschwindigkeit von 11 m s . braucht er für diese Strecke 33 11 s = 3s.
Punkt B wird als nach 3s erreicht.

In einer s wird also der Vektor 1 3 ( -21 18 -18 ) = ( -7 6 -6 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( 1 -3 654 ) +t ( -7 6 -6 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um -6m (Änderung in der x3-Koordinate). Um von 654 auf 528m (also -126m) zu steigen (bzw. fallen), muss es also -126 -6 s = 21s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( 1 -3 654 ) +21 ( -7 6 -6 ) = ( -146 123 528 )
Also im Punkt P(-146|123|528).

Höhe nach x Kilometern

Beispiel:

Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (15|6|0) (alle Angaben in Meter). Nach 2min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B (-27|42|-36) angelangt.
Wie tief ist das Uboot, wenn es 5,94 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)

Lösung einblenden

Das Bewegungsobjekt legt in 2 min den Vektor AB = ( -42 36 -36 ) zurück.
In 1min legt es also den Vektor 1 2 ( -42 36 -36 ) = ( -21 18 -18 ) zurück.
Die Geradengleichung x = ( 15 6 0 ) +t ( -21 18 -18 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge = (-21) 2 + 182 + (-18) 2 = 1089 = 33.
Die Geschwindigkeit ist also v=33 m min
Für die Strecke von 5.94 km braucht es also 5940 33 min = 180min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( 15 6 0 ) +180 ( -21 18 -18 ) = ( -3765 3246 -3240 ) , also im Punkt P(-3765|3246|-3240).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -3240 (in m).

Zwei Objekte - gleiche Höhe

Beispiel:

Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( -91 6 1,7 ) +t ( 9 -5 0,2 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (-10|-3|0,7) . Nach 5min ist es im Punkt B (-10|-48|2,2) angelangt.
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Wie weit sind die beiden Flugzeuge von einander entfernt, wenn F1 genau senkrecht über oder unter der Flugbahn von F2 ist?
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?

Lösung einblenden

Das Flugzeug F2 legt in 5min den Vektor AB = ( 0 -45 1.5 ) zurück.
In 1min legt es also den Vektor 1 5 ( 0 -45 1.5 ) = ( 0 -9 0.3 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -10 -3 0.7 ) +t ( 0 -9 0.3 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,2t +1,7 = 0,3t +0,7 | -1,7 -0,3t
-0,1t = -1 |:(-0,1 )
t = 10

nach 10 min sind also das Flugzeug F1 und das Flugzeug F2 auf gleicher Höhe: 0,210 +1,7 = 3.7 = 0,310 +0,7


Das Flugzeug F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich das Flugzeug F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( -91 6 1.7 ) +s ( 9 -5 0.2 ) = ( -10 -3 0.7 ) +t ( 0 -9 0.3 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-91+9s= -10+0t6-5s= -3-9t

9s = 81 (I) -5s +9t = -9 (II)
9s = 81 (I) -5s +9t = -9 (II)

langsame Rechnung einblenden5·(I) + 9·(II)

9s = 81 (I) ( 45 -45 )s +(0 +81 )t = ( 405 -81 ) (II)
9s = 81 (I) +81t = 324 (II)
Zeile (II): +81t = 324

t = 4

eingesetzt in Zeile (I):

9s = 81

s = 9

L={(9 |4 )}

Das heißt also, dass das Flugzeug F1 nach 9min und das Flugzeug F2 nach 4min an diesem 'x1-x2-Schnittpunkt' ist.

das Flugzeug F1 ist also nach 9min bei ( -91 6 1.7 ) +9 ( 9 -5 0.2 ) = ( -10 -39 3.5 ) , während das Flugzeug F2 nach 9min bei ( -10 -3 0.7 ) +9 ( 0 -9 0.3 ) = ( -10 -84 3.4 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-10|-39|3.5) und P2(-10|-84|3.4):
P1P2 = ( -10-( - 10 ) -84-( - 39 ) 3.4-3.5 ) = ( 0 -45 -0.1 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 0 -45 -0.1 ) | = 0 2 + (-45)2 + (-0.1) 2 = 2025.01 ≈ 45.000111110974

Der Abstand der beiden Objekte nach 9min ist also 2025 km ≈ 45 km


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( -91 6 1.7 ) +s ( 9 -5 0.2 ) = ( -10 -3 0.7 ) +t ( 0 -9 0.3 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-91+9s= -10+0t6-5s= -3-9t

9s = 81 (I) -5s +9t = -9 (II)
9s = 81 (I) -5s +9t = -9 (II)

langsame Rechnung einblenden5·(I) + 9·(II)

9s = 81 (I) ( 45 -45 )s +(0 +81 )t = ( 405 -81 ) (II)
9s = 81 (I) +81t = 324 (II)
Zeile (II): +81t = 324

t = 4

eingesetzt in Zeile (I):

9s = 81

s = 9

L={(9 |4 )}

Das heißt also, dass das Flugzeug F1 nach 9min und das Flugzeug F2 nach 4min an diesem 'x1-x2-Schnittpunkt' ist.

das Flugzeug F1 ist also nach 9min bei ( -91 6 1.7 ) +9 ( 9 -5 0.2 ) = ( -10 -39 3.5 ) , während das Flugzeug F2 nach 4min bei ( -10 -3 0.7 ) +4 ( 0 -9 0.3 ) = ( -10 -39 1.9 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

3.5 - 1.9 = 1.6 km

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -1 2 2 ) +t ( -10 11 -2 ) . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn).
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (15|-4|9) . Nach 1s ist sie im Punkt B (5|8|5) angelangt.
Wie weit sind die Drohne und die Seilbahngondel nach 1s von einander entfernt?
Berechne den kleinsten Abstand, den die Drohne von der Seilbahn haben kann.
Zu welchem Zeitpunkt kommen sich die Drohne und die Gondel der Seilbahn am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Die Seilbahngondel legt in 1s den Vektor AB = ( -10 12 -4 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 15 -4 9 ) +t ( -10 12 -4 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Die Drohne ist nach 1s an der Stelle P1 ( -1 2 2 ) +1 ( -10 11 -2 ) = ( -11 13 0 ) und die Seilbahngondel an der Stelle P2 ( 15 -4 9 ) +1 ( -10 12 -4 ) = ( 5 8 5 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-11|13|0) und P2(5|8|5):
P1P2 = ( 5-( - 11 ) 8-13 5-0 ) = ( 16 -5 5 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 16 -5 5 ) | = 16 2 + (-5)2 + 5 2 = 306 ≈ 17.492855684536

Der Abstand ist also ca. 17.49 m.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( 15 -4 9 ) +t ( -10 12 -4 ) enthält und parallel zur Geraden g: x = ( -1 2 2 ) +t ( -10 11 -2 ) ist, also x = ( 15 -4 9 ) + r ( -10 12 -4 ) + s ( -10 11 -2 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( -10 11 -2 ) × ( -10 12 -4 ) = ( 11 · ( -4 ) - ( -2 ) · 12 -2 · ( -10 ) - ( -10 ) · ( -4 ) -10 · 12 - 11 · ( -10 ) ) = ( -44 +24 20 -40 -120 +110 ) = ( -20 -20 -10 ) = -10⋅ ( 2 2 1 )

Wenn wir den Aufpunkt von h Ah(15|-4|9) in die allgemeine Ebenengleichung 2 x 1 +2 x 2 + x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

2 x 1 +2 x 2 + x 3 = 31

Nun können wir den Abstand zwischen der Geraden g: x = ( -1 2 2 ) +t ( -10 11 -2 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (-1|2|2), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 2 ( - 1 )+2 2+1 2-31 | 2 2 + 2 2 + 1 2
= | -27 | 9 = 27 3 = 9

Alternativer (kürzerer) Lösungsweg mit Formel einblenden

Der Abstand der beiden Bewegungsbahnen beträgt somit 9 m


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -1 -10 t | 2 +11 t | 2 -2 t ) und G2 t ( 15 -10 t | -4 +12 t | 9 -4 t ) minimal wird.

d(t)= | ( 15-10t -4+12t 9-4t ) - ( -1-10t 2+11t 2-2t ) | = | ( 16+0t -6+1t 7-2t ) | soll also minimal werden.

d(t)= ( 0 +16 ) 2 + ( t -6 ) 2 + ( -2t +7 ) 2
= 256 + t 2 -12t +36 +4 t 2 -28t +49
= 5 t 2 -40t +341

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 10x -40 +0

f''(t)= 10 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 4 als potentielle Extremstelle.

Wegen f''(t)= 10 +0+0 >0 ist also der Tiefpunkt bei t= 4 .

der minimale Abstand ist also d( 4 )= 5 4 2 -404 +341 = 261 ≈ 16.2 (in m)

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (-7|55|0,1) . Nach 2s ist sie im Punkt B (1|67|0,7) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( 5 -3 0,8 ) +t ( -1 8 0,2 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 2s den Vektor AB = ( 8 12 0.6 ) zurück.
In 1s legt es also den Vektor 1 2 ( 8 12 0.6 ) = ( 4 6 0.3 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -7 55 0.1 ) +t ( 4 6 0.3 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,2t +0,8 = 0,3t +0,1 | -0,8 -0,3t
-0,1t = -0,7 |:(-0,1 )
t = 7

nach 7 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,27 +0,8 = 2.2 = 0,37 +0,1


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( 5 -3 0.8 ) +s ( -1 8 0.2 ) = ( -7 55 0.1 ) +t ( 4 6 0.3 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

5-1s= -7+4t-3+8s= 55+6t

-1s -4t = -12 (I) 8s -6t = 58 (II)
-1s -4t = -12 (I) 8s -6t = 58 (II)

langsame Rechnung einblenden8·(I) + 1·(II)

-1s -4t = -12 (I) ( -8 +8 )s +( -32 -6 )t = ( -96 +58 ) (II)
-1s -4t = -12 (I) -38t = -38 (II)
Zeile (II): -38t = -38

t = 1

eingesetzt in Zeile (I):

-1s -4·(1 ) = -12 | +4
-1 s = -8 | : (-1)

s = 8

L={(8 |1 )}

Das heißt also, dass die Drohne F1 nach 8s und die Seilbahngondel F2 nach 1s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 8s bei ( 5 -3 0.8 ) +8 ( -1 8 0.2 ) = ( -3 61 2.4 ) , während die Seilbahngondel F2 nach 8s bei ( -7 55 0.1 ) +8 ( 4 6 0.3 ) = ( 25 103 2.5 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-3|61|2.4) und P2(25|103|2.5):
P1P2 = ( 25-( - 3 ) 103-61 2.5-2.4 ) = ( 28 42 0.1 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 28 42 0.1 ) | = 28 2 + 422 + 0.1 2 = 2548.01 ≈ 50.477816910005

Der Abstand der beiden Objekte nach 8s ist also 2548.2304 m ≈ 50.48 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( 5 -3 0.8 ) +s ( -1 8 0.2 ) = ( -7 55 0.1 ) +t ( 4 6 0.3 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

5-1s= -7+4t-3+8s= 55+6t

-1s -4t = -12 (I) 8s -6t = 58 (II)
-1s -4t = -12 (I) 8s -6t = 58 (II)

langsame Rechnung einblenden8·(I) + 1·(II)

-1s -4t = -12 (I) ( -8 +8 )s +( -32 -6 )t = ( -96 +58 ) (II)
-1s -4t = -12 (I) -38t = -38 (II)
Zeile (II): -38t = -38

t = 1

eingesetzt in Zeile (I):

-1s -4·(1 ) = -12 | +4
-1 s = -8 | : (-1)

s = 8

L={(8 |1 )}

Das heißt also, dass die Drohne F1 nach 8s und die Seilbahngondel F2 nach 1s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 8s bei ( 5 -3 0.8 ) +8 ( -1 8 0.2 ) = ( -3 61 2.4 ) , während die Seilbahngondel F2 nach 1s bei ( -7 55 0.1 ) +1 ( 4 6 0.3 ) = ( -3 61 0.4 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

2.4 - 0.4 = 2 m

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( -2 -7 -2 ) +t ( -6 4 -3 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (19|-16|11) . Nach 4min ist es im Punkt B (-9|0|-1) angelangt.
Wie weit sind die beiden Flugzeuge nach 2min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 4min den Vektor AB = ( -28 16 -12 ) zurück.
In 1min legt es also den Vektor 1 4 ( -28 16 -12 ) = ( -7 4 -3 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( 19 -16 11 ) +t ( -7 4 -3 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 2min an der Stelle P1 ( -2 -7 -2 ) +2 ( -6 4 -3 ) = ( -14 1 -8 ) und F2 an der Stelle P2 ( 19 -16 11 ) +2 ( -7 4 -3 ) = ( 5 -8 5 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(-14|1|-8) und P2(5|-8|5):
P1P2 = ( 5-( - 14 ) -8-1 5-( - 8 ) ) = ( 19 -9 13 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 19 -9 13 ) | = 19 2 + (-9)2 + 13 2 = 611 ≈ 24.718414188617

Der Abstand ist also ca. 24.72 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -2 -6 t | -7 +4 t | -2 -3 t ) und G2 t ( 19 -7 t | -16 +4 t | 11 -3 t ) minimal wird.

d(t)= | ( 19-7t -16+4t 11-3t ) - ( -2-6t -7+4t -2-3t ) | = | ( 21-1t -9+0t 13+0t ) | soll also minimal werden.

d(t)= ( -t +21 ) 2 + ( 0 -9 ) 2 + ( 0 +13 ) 2
= t 2 -42t +441 +81 +169
= t 2 -42t +691

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 2x -42 +0

f''(t)= 2 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 21 als potentielle Extremstelle.

Wegen f''(t)= 2 +0+0 >0 ist also der Tiefpunkt bei t= 21 .

der minimale Abstand ist also d( 21 )= 21 2 -4221 +691 = 250 ≈ 15.8

Nicht lineare Bewegung

Beispiel:

Ein Fußballtorwart führt eine Abschlag auf einem Fußballplatz durch, der durch die x1x2-Ebene beschrieben wird. Die Bahn des Fußballs kann mithilfe der Punkte Xt( 18t +1 | 24t +4 | - t 2 +1,7t ) beschrieben werden; dabei ist t die seit dem Abschlag vergangene Zeit in Sekunden (Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität). Auf dieser Bahn fliegt der Ball auf den Fußballplatz.
Berechne die Weite des Abschlags, also die Entfernung zwischen dem Punkt des Abstoßes und dem Punkt, bei dem der Ball das erste mal wieder auf dem Boden landet.

Lösung einblenden

Zuerst berechnen den t-Wert, an dem der Fußball auf die x1x2-Ebene trifft, also wenn x3= 0 ist:

- x 2 +1,7x = 0
x ( -x +1,7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +1,7 = 0 | -1,7
-x = -1,7 |:(-1 )
x2 = 1,7

Das heißt also, dass der Fußball nach 1,7 s in der x1x2-Ebene angekommen ist. Wenn wir t = 1,7 in den Punkt Xt einsetzen, erhalten wir L( 181,7 +1 | 241,7 +4 | - 1,7 2 +1,71,7 ) = L(31.6|44.8|0) als den Landepunkt.

Da ja der Fußball im Punkt A(1|4|0) losgeflogen ist, können wir die gesuchte Weite einfach als Länge des
Vektors AL = ( 31.6-1 44.8-4 0-0 ) = ( 30.6 40.8 0 ) berechnen:

d = 30.6 2 + 40.82 + 0 2 = 51