Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:
Zufallsgröße X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
zugehörige Ereignisse | 2 - 5 | 3 - 5 | 2 - 3 | 2 - 2 3 - 3 5 - 5 | 3 - 2 | 5 - 3 | 5 - 2 |
Zufallsgröße WS-Verteilung
Beispiel:
Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl der Würfe, bei denen "Zahl" erscheint. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Anzahl von Zahl-Würfen' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Ergebnisse | 0 - 0 - 0 | 0 - 0 - 1 0 - 1 - 0 1 - 0 - 0 | 0 - 1 - 1 1 - 0 - 1 1 - 1 - 0 | 1 - 1 - 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ |
= | + + | + + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 0 | 1 | 2 | 3 |
P(X=k) |
Zufallsgr. WS-Vert. (auch ohne zur.)
Beispiel:
In einem Kartenstapel sind nur noch vier Karten mit dem Wert 4, vier Karten mit dem Wert 6 und vier 10er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Werte der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Summe der beiden Karten' sind folgende Werte möglich:
Zufallsgröße X | X = 8 | X = 10 | X = 12 | X = 14 | X = 16 | X = 20 |
zugehörige Ergebnisse | 4 - 4 | 4 - 6 6 - 4 | 6 - 6 | 4 - 10 10 - 4 | 6 - 10 10 - 6 | 10 - 10 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 8 | X = 10 | X = 12 | X = 14 | X = 16 | X = 20 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ | ⋅ + ⋅ | ⋅ + ⋅ | ⋅ |
= | + | + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 8 | 10 | 12 | 14 | 16 | 20 |
P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Aus einem Kartenstapel mit 12 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
Zufallsgröße X | 1 | 2 | 3 |
P(X=k) |
Zufallsgröße rückwärts
Beispiel:
Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?
Zufallsgröße X | 1 | 2 | 3 | 4 | 6 | 9 |
P(X=k) | ? | ? | ? | ? |
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=1) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.
Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=9) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = =
Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p =
Somit erhalten wir:
α1 = ⋅ 360° = 180°
α2 = ⋅ 360° = 50°
α3 = ⋅ 360° = 130°
Erwartungswerte
Beispiel:
Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 48€, bei einer 5 bekommt er 24€, bei einer 4 bekommt er 12€. Würfelt er eine 1, 2 oder 3 so bekommt er 6€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist (also so, dass der Einsatz gleich dem Erwartungswert der Auszahlung ist)?
Die Zufallsgröße X beschreibt den Auszahlungsbetrag.
Erwartungswert der Zufallsgröße X
Ereignis | 1-3 | 4 | 5 | 6 |
Zufallsgröße xi | 6 | 12 | 24 | 48 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 6⋅ + 12⋅ + 24⋅ + 48⋅
=
=
Wenn der Erwartungswert für die Auszahlung € ist, muss somit auch der Einsatz € betragen, damit das Spiel fair ist.
Faires Spiel - fehlende Auszahlung best.
Beispiel:
In einer Urne sind 5 Kugeln, die mit 6€ beschriftet sind, 6 Kugeln, die mit 20€ und 4 Kugeln, die mit 22€ beschriftet sind. Bei dem Spiel bekommt man den Betrag, der auf der Kugel steht, ausbezahlt. Außerdem sind noch weitere 5 Kugeln in der Urne. Mit welchem Betrag müsste man diese beschriften, damit das Spiel bei einem Einsatz von 19,9€ fair wäre?
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 6 | 20 | 22 | ? |
Zufallsgröße xi | 6 | 20 | 22 | x |
Zufallsgröße yi (Gewinn) | -13.9 | 0.1 | 2.1 | x-19.9 |
P(X=xi) | ||||
xi ⋅ P(X=xi) | ⋅ x | |||
yi ⋅ P(Y=yi) | ⋅(x-19.9) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 19.9
= 19.9
= 19.9= | |||
= | |⋅ 20 | ||
= | |||
= | | | ||
= | |: | ||
= |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0= | |||
= | |||
= | |⋅ 4 | ||
= | |||
= | | | ||
= |
In beiden Fällen ist also der gesuchte Betrag: 32€
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
- Das Spiel mit dem Glücksrad muss fair sein
- Der Einsatz soll 4€ betragen
- Der minimale Auszahlungsbetrag soll 1€ sein
- Der maximale Auszahlungsbetrag soll soll 10€ sein
- Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 1 | 10 | ||
Y Gewinn (Ausz. - Einsatz) | -3 | 6 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 1 | 10 | ||
Y Gewinn (Ausz. - Einsatz) | -3 | 6 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 1 | 10 | ||
Y Gewinn (Ausz. - Einsatz) | -3 | 6 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 1 | 2.5 | 5.5 | 10 |
Y Gewinn (Ausz. - Einsatz) | -3 | -1.5 | 1.5 | 6 |
P(X) = P(Y) | ||||
Winkel | 120° | 90° | 90° | 60° |
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -3⋅ + -1.5⋅ + 1.5⋅ + 6⋅
=
=
=
=
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
In einer Urne sind 2 rote und 4 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Bestimme den Erwartungswert für die Anzahl der Ziehungen, bis die erste rote Kugel gezogen ist.
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'rot' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 3-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 4-ten Versuch st:
Die Wahrscheinlichkeit für ein 'rot' im 5-ten Versuch st:
Die Zufallsgröße X beschreibt die Anzahl der Ziehungen. bis die erste rote Kugel gezogen ist.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 | 4 | 5 |
Zufallsgröße xi | 1 | 2 | 3 | 4 | 5 |
P(X=xi) | |||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅ + 4⋅ + 5⋅
=
=
=
=
≈ 2.33
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Ein Spieler darf aus einer Urne mit 10 blauen und 5 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 21€, bei 2 blauen bekommt er noch 8€, bei einer 5€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
blau -> blau -> blau | |
blau -> blau -> rot | |
blau -> rot -> blau | |
blau -> rot -> rot | |
rot -> blau -> blau | |
rot -> blau -> rot | |
rot -> rot -> blau | |
rot -> rot -> rot |
Die Wahrscheinlichkeit für 0 mal 'blau' ist:
Die Wahrscheinlichkeit für 1 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'blau' ist:
Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 5 | 8 | 21 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 5⋅ + 8⋅ + 21⋅
=
=
=
≈ 10.59
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
In einem Stapel Karten mit 3 Asse, 8 Könige, 7 Damen und 6 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 350, 2 Damen 180 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 20 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
As -> As | |
As -> König | |
As -> Dame | |
As -> Bube | |
König -> As | |
König -> König | |
König -> Dame | |
König -> Bube | |
Dame -> As | |
Dame -> König | |
Dame -> Dame | |
Dame -> Bube | |
Bube -> As | |
Bube -> König | |
Bube -> Dame | |
Bube -> Bube |
Die Wahrscheinlichkeit für '2 Asse' ist:
P('As'-'As')
=
Die Wahrscheinlichkeit für '2 Könige' ist:
P('König'-'König')
=
Die Wahrscheinlichkeit für '2 Damen' ist:
P('Dame'-'Dame')
=
Die Wahrscheinlichkeit für '2 Buben' ist:
P('Bube'-'Bube')
=
Die Wahrscheinlichkeit für 'Paar (D&K)' ist:
P('König'-'Dame') + P('Dame'-'König')
= + =
Die Zufallsgröße X beschreibt die gewonnenen Punkte.
Erwartungswert der Zufallsgröße X
Ereignis | 2 Asse | 2 Könige | 2 Damen | 2 Buben | Paar (D&K) |
Zufallsgröße xi | 1000 | 350 | 180 | 50 | 20 |
P(X=xi) | |||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1000⋅ + 350⋅ + 180⋅ + 50⋅ + 20⋅
=
=
=
=
≈ 66.85