Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
Für die Zufallsgröße X: 'Differenz der beiden Würfe' sind folgende Werte möglich:
Zufallsgröße X | 0 | 1 | 2 |
zugehörige Ereignisse | 2 - 2 3 - 3 4 - 4 | 2 - 3 3 - 2 3 - 4 4 - 3 | 2 - 4 4 - 2 |
Zufallsgröße WS-Verteilung
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für die Zufallsgröße X: 'Differenz Glücksrad 1 - Glücksrad 2' sind folgende Werte möglich:
Zufallsgröße X | X = -2 | X = -1 | X = 0 | X = 1 | X = 2 |
zugehörige Ergebnisse | 1 - 3 | 1 - 2 2 - 3 | 1 - 1 2 - 2 3 - 3 | 2 - 1 3 - 2 | 3 - 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = -2 | X = -1 | X = 0 | X = 1 | X = 2 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ + ⋅ + ⋅ | ⋅ + ⋅ | ⋅ |
= | + | + + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | -2 | -1 | 0 | 1 | 2 |
P(X=k) |
Zufallsgr. WS-Vert. (auch ohne zur.)
Beispiel:
In einer Urne sind sechs Kugeln, die mit der Zahl 2 beschriftet sind und vier Kugeln, die mit der Zahl 6 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:
Zufallsgröße X | X = 4 | X = 12 | X = 36 |
zugehörige Ergebnisse | 2 - 2 | 2 - 6 6 - 2 | 6 - 6 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 4 | X = 12 | X = 36 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ | ⋅ + ⋅ | ⋅ |
= | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 4 | 12 | 36 |
P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
Aus einem Kartenstapel mit 7 Karten der Farbe Herz und 2 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste Herz-Karte gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Karten vom Typ 'kein Herz' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Karten vom Typ 'kein Herz' bereits gezogen und damit weg sind) eine Karte vom Typ 'Herz' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
Zufallsgröße X | 1 | 2 | 3 |
P(X=k) |
Zufallsgröße rückwärts
Beispiel:
Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?
Zufallsgröße X | 1 | 2 | 3 | 4 | 6 | 9 |
P(X=k) | ? | ? | ? | ? |
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=1) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.
Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=9) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = =
Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p =
Somit erhalten wir:
α1 = ⋅ 360° = 100°
α2 = ⋅ 360° = 170°
α3 = ⋅ 360° = 90°
Erwartungswerte
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Die Zufallsgröße X beschreibt die Punktezahl auf einem Sektor des Glücksrads.
Erwartungswert der Zufallsgröße X
Ereignis | 3 | 4 | 12 | 100 |
Zufallsgröße xi | 3 | 4 | 12 | 100 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 3⋅ + 4⋅ + 12⋅ + 100⋅
=
=
=
≈ 17.63
Faires Spiel - fehlende Auszahlung best.
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | 2 | 4 | 16 | ? |
Zufallsgröße xi | 2 | 4 | 16 | x |
Zufallsgröße yi (Gewinn) | -7.75 | -5.75 | 6.25 | x-9.75 |
P(X=xi) | ||||
xi ⋅ P(X=xi) | ⋅ x | |||
yi ⋅ P(Y=yi) | ⋅(x-9.75) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 9.75
= 9.75
= 9.75= | |||
= | |⋅ 8 | ||
= | |||
= | | | ||
= |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0= | |||
= | |||
= | |⋅ 8 | ||
= | |||
= | | | ||
= |
In beiden Fällen ist also der gesuchte Betrag: 32€
Erwartungswert ganz offen
Beispiel:
Ein Spielautomatenhersteller bekommt von einem Kunden den Auftrag einen Automaten zu entwickeln, der folgenden Bedingungen erfüllt.
- Der Einsatz für ein Spiel soll 2€ betragen
- auf lange Sicht soll er 10ct Gewinn pro Spiel für den Betreiber abwerfen
- es sollen 5 verschiedene Felder (Kirsche, Zitrone, Apfel, Banane, Erdbeere) mit verschiedenen Auszahlungsbeträgen sein
- bei einem Feld soll keine Auszahlung erfolgen
- um Kunden zu locken soll bei einem Feld 28€ ausgezahlt werden
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 28 | |||
Y Gewinn (Ausz. - Einsatz) | -2 | 26 | |||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 28 | |||
Y Gewinn (Ausz. - Einsatz) | -2 | 26 | |||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Bei der mittleren Option setzen wir den Betrag einfach gleich wie den Einsatz, so dass diese den Erwartungswert nicht verändert.
Als Wahrscheinlichkeit wählen wir einen Bruch so, dass die Restwahrscheinlichkeit für die verbleibenden zwei Optionen nicht allzu kompliziert wird.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 2 | 28 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 0 | 26 | ||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von ++=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 2 | 28 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 0 | 26 | ||
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 1 | 2 | 3 | 28 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 0 | 1 | 26 |
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Weil der Erwartungswert ja aber nicht 0 sondern sein soll, müssen wir nun noch den Auszahlungsbetrag
bei der 2. Option (betragsmäßig) vergrößern. Und zwar so, dass er mit der Wahrscheinlichkeit
multipliziert gerade um wächst.
Also x ⋅= => x=:
= = -0.8
Die neue Auszahlung für 'Zitrone' ist
also 0.2
Kirsche | Zitrone | Apfel | Banane | Erdbeere | |
X (z.B. Auszahlung) | 0 | 0.2 | 2 | 3 | 28 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1.8 | 0 | 1 | 26 |
P(X) = P(Y) | |||||
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅ + -1.8⋅ + 0⋅ + 1⋅ + 26⋅
=
=
=
=
≈ -0.1
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st:
Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 | 4 |
Zufallsgröße xi | 1 | 2 | 3 | 4 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅ + 4⋅
=
=
=
=
≈ 1.12
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
In einem Kartenstapel befinden sich 4 Asse und 6 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
As -> As -> As | |
As -> As -> andereKarte | |
As -> andereKarte -> As | |
As -> andereKarte -> andereKarte | |
andereKarte -> As -> As | |
andereKarte -> As -> andereKarte | |
andereKarte -> andereKarte -> As | |
andereKarte -> andereKarte -> andereKarte |
Die Wahrscheinlichkeit für 0 mal 'As' ist:
Die Wahrscheinlichkeit für 1 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'As' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'As' ist:
Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 10 | 20 | 30 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 10⋅ + 20⋅ + 30⋅
=
=
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
Blume -> Blume | |
Blume -> Raute | |
Blume -> Stein | |
Blume -> Krone | |
Raute -> Blume | |
Raute -> Raute | |
Raute -> Stein | |
Raute -> Krone | |
Stein -> Blume | |
Stein -> Raute | |
Stein -> Stein | |
Stein -> Krone | |
Krone -> Blume | |
Krone -> Raute | |
Krone -> Stein | |
Krone -> Krone |
Die Wahrscheinlichkeit für '2 gleiche' ist:
P('Blume'-'Blume') + P('Raute'-'Raute') + P('Stein'-'Stein')
= + + =
Die Wahrscheinlichkeit für '1 Krone' ist:
P('Blume'-'Krone') + P('Raute'-'Krone') + P('Stein'-'Krone') + P('Krone'-'Blume') + P('Krone'-'Raute') + P('Krone'-'Stein')
= + + + + + =
Die Wahrscheinlichkeit für '2 Kronen' ist:
P('Krone'-'Krone')
=
Die Zufallsgröße X beschreibt den ausbezahlten Gewinn bei einem Spiel.
Erwartungswert der Zufallsgröße X
Ereignis | 2 gleiche | 1 Krone | 2 Kronen |
Zufallsgröße xi | 4 | 4 | 20 |
P(X=xi) | |||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 4⋅ + 4⋅ + 20⋅
=
=
=
=
≈ 2.5