Aufgabenbeispiele von Erwartungswert

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt das Produkt der Zahlen die bei den beiden Glücksräder erscheinen. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Produkt der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße X123469
zugehörige
Ereignisse
1 - 11 - 2
2 - 1
1 - 3
3 - 1
2 - 22 - 3
3 - 2
3 - 3

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Zwei gleiche Glücksräder wie rechts in der Abbildung werden gleichzeitig gedreht. Die Zufallsgröße X beschreibt die Differenz der größeren Zahl minus der kleineren Zahl (bzw. der beiden gleichgroßen Zahlen) der beiden Glücksräder. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Glücksräder' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Ergebnisse
1 - 1
2 - 2
3 - 3
1 - 2
2 - 1
2 - 3
3 - 2
1 - 3
3 - 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 2
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 2
+ 1 4 1 4
+ 1 4 1 4
1 2 1 4
+ 1 4 1 2
+ 1 4 1 4
+ 1 4 1 4
1 2 1 4
+ 1 4 1 2
  = 1 4 + 1 16 + 1 16 1 8 + 1 8 + 1 16 + 1 16 1 8 + 1 8



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X012
P(X=k) 3 8 3 8 1 4

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einer Urne sind zwei Kugeln, die mit der Zahl 3 beschriftet, zwei Kugeln, die mit der Zahl 6 sind, und vier Kugeln, die mit der Zahl 7 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größten und der anderen Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Ergebnisse
3 - 3
6 - 6
7 - 7
6 - 7
7 - 6
3 - 6
6 - 3
3 - 7
7 - 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 4 1 7
+ 1 4 1 7
+ 1 2 3 7
1 4 4 7
+ 1 2 2 7
1 4 2 7
+ 1 4 2 7
1 4 4 7
+ 1 2 2 7
  = 1 28 + 1 28 + 3 14 1 7 + 1 7 1 14 + 1 14 1 7 + 1 7



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X0134
P(X=k) 2 7 2 7 1 7 2 7

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

In einer Urne sind 2 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 1 2 1 3 1 6

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 15 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 6 und 9 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X41218365481
P(X=k) 4 225 ???? 1 9

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 4 225 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 4 225 und somit p1 = 2 15 .

Ebenso gibt es für X=81 nur das Ereignis: '9'-'9', also dass zwei mal hintereinander '9' kommt.

Wenn p3 die Wahrscheinlichkeit von '9' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '9' kommt, gelten: P(X=81) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=81) = 1 9 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 1 9 und somit p3 = 1 3 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 2 15 - 1 3 = 15 15 - 2 15 - 5 15 = 8 15

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 15 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 15

Somit erhalten wir:

n2 = 2 15 ⋅ 15 = 2

n6 = 8 15 ⋅ 15 = 8

n9 = 1 3 ⋅ 15 = 5

Erwartungswerte

Beispiel:

Ein Spieler darf einmal Würfeln. Bei einer 6 bekommt er 24€, bei einer 5 bekommt er 12€, bei einer 4 bekommt er 18€. Würfelt er eine 1, 2 oder 3 so bekommt er 4€. Wie hoch müsste der Einsatz sein, damit das Spiel fair ist (also so, dass der Einsatz gleich dem Erwartungswert der Auszahlung ist)?

Lösung einblenden

Die Zufallsgröße X beschreibt den Auszahlungsbetrag.

Erwartungswert der Zufallsgröße X

Ereignis 1-3 4 5 6
Zufallsgröße xi 4 18 12 24
P(X=xi) 1 2 1 6 1 6 1 6
xi ⋅ P(X=xi) 2 3 2 4

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 4⋅ 1 2 + 18⋅ 1 6 + 12⋅ 1 6 + 24⋅ 1 6

= 2+ 3+ 2+ 4
= 11

Wenn der Erwartungswert für die Auszahlung 11€ ist, muss somit auch der Einsatz 11 betragen, damit das Spiel fair ist.

Faires Spiel - fehlende Auszahlung best.

Beispiel:

Ein Spieler darf aus einer Urne mit 9 blauen, 4 roten, 6 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 8€. Bei rot erhält er 18€ und bei grün erhält er 12€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 14€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 8 18 12 x
Zufallsgröße yi (Gewinn) -6 4 -2 x-14
P(X=xi) 9 24 4 24 6 24 5 24
xi ⋅ P(X=xi) 3 3 3 5 24 ⋅ x
yi ⋅ P(Y=yi) - 9 4 2 3 - 1 2 5 24 ⋅(x-14)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 14

9 24 · 8 + 4 24 · 18 + 6 24 · 12 + 5 24 x = 14

3 +3 +3 + 5 24 x = 14

3 +3 +3 + 5 24 x = 14
5 24 x +9 = 14 |⋅ 24
24( 5 24 x +9 ) = 336
5x +216 = 336 | -216
5x = 120 |:5
x = 24

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

9 24 · ( -6 ) + 4 24 · 4 + 6 24 · ( -2 ) + 5 24 ( x -14 ) = 0

- 9 4 + 2 3 - 1 2 + 5 24 · x + 5 24 · ( -14 ) = 0

- 9 4 + 2 3 - 1 2 + 5 24 x - 35 12 = 0
5 24 x -5 = 0 |⋅ 24
24( 5 24 x -5 ) = 0
5x -120 = 0 | +120
5x = 120 |:5
x = 24

In beiden Fällen ist also der gesuchte Betrag: 24

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 10€ betragen
  • Der minimale Auszahlungsbetrag soll 7€ sein
  • Der maximale Auszahlungsbetrag soll soll 33€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 7 33
Y Gewinn (Ausz. - Einsatz) -3 23
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 7 33
Y Gewinn (Ausz. - Einsatz) -3 23
P(X) = P(Y) 1 3 1 23
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 3 + 1 23 = 26 69
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 26 69 = 43 69 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 7 33
Y Gewinn (Ausz. - Einsatz) -3 23
P(X) = P(Y) 1 3 43 138 43 138 1 23
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 3 2 ) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 7 8.5 11.5 33
Y Gewinn (Ausz. - Einsatz) -3 -1.5 1.5 23
P(X) = P(Y) 1 3 43 138 43 138 1 23
Winkel 120° 112.17° 112.17° 15.65°
Y ⋅ P(Y) -1 - 43 92 43 92 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -3⋅ 1 3 + -1.5⋅ 43 138 + 1.5⋅ 43 138 + 23⋅ 1 23

= -1 - 43 92 + 43 92 + 1
= - 92 92 - 43 92 + 43 92 + 92 92
= 0 92
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 8 9

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 4 39

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 8 975

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 2925

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 8 9 4 39 8 975 1 2925
xi ⋅ P(X=xi) 8 9 8 39 8 325 4 2925

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 8 9 + 2⋅ 4 39 + 3⋅ 8 975 + 4⋅ 1 2925

= 8 9 + 8 39 + 8 325 + 4 2925
= 2600 2925 + 600 2925 + 72 2925 + 4 2925
= 3276 2925
= 28 25

1.12

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

Auf einen Schüleraustausch bewerben sich 21 Mädchen und 5 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie viele Mädchen kann man bei den ersten 3 verlosten Plätzen erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
Mädchen -> Mädchen -> Mädchen 133 260
Mädchen -> Mädchen -> Jungs 7 52
Mädchen -> Jungs -> Mädchen 7 52
Mädchen -> Jungs -> Jungs 7 260
Jungs -> Mädchen -> Mädchen 7 52
Jungs -> Mädchen -> Jungs 7 260
Jungs -> Jungs -> Mädchen 7 260
Jungs -> Jungs -> Jungs 1 260

Die Wahrscheinlichkeit für 0 mal 'Mädchen' ist: 1 260

Die Wahrscheinlichkeit für 1 mal 'Mädchen' ist: 7 260 + 7 260 + 7 260 = 21 260

Die Wahrscheinlichkeit für 2 mal 'Mädchen' ist: 7 52 + 7 52 + 7 52 = 21 52

Die Wahrscheinlichkeit für 3 mal 'Mädchen' ist: 133 260

Die Zufallsgröße X beschreibt die Anzahl an Mädchen unter den drei verlosten Plätzen.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 1 2 3
P(X=xi) 1 260 21 260 21 52 133 260
xi ⋅ P(X=xi) 0 21 260 21 26 399 260

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 1 260 + 1⋅ 21 260 + 2⋅ 21 52 + 3⋅ 133 260

= 0+ 21 260 + 21 26 + 399 260
= 0 260 + 21 260 + 210 260 + 399 260
= 630 260
= 63 26

2.42

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

Ein leidenschaftlicher Mäxle-Spieler möchte eine Mäxle-Spielautomat bauen. Wie beim richtigen Mäxle sollen auch hier zwei normale Würfel gleichzeitig geworfen werden (bzw. dies eben simuliert). Bei einem Mäxle (also eine 1 und eine 2) soll dann 16€ ausbezahlt werden, bei einem Pasch (also zwei gleiche Augenzahlen) 7€ und bei 61-65 also (also ein Würfel 6 und der andere keine 6) noch 1€. Wie groß müsste der Einsatz sein, damit das Spiel fair wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
1 -> 1 1 36
1 -> 2 1 36
1 -> 3 1 36
1 -> 4 1 36
1 -> 5 1 36
1 -> 6 1 36
2 -> 1 1 36
2 -> 2 1 36
2 -> 3 1 36
2 -> 4 1 36
2 -> 5 1 36
2 -> 6 1 36
3 -> 1 1 36
3 -> 2 1 36
3 -> 3 1 36
3 -> 4 1 36
3 -> 5 1 36
3 -> 6 1 36
4 -> 1 1 36
4 -> 2 1 36
4 -> 3 1 36
4 -> 4 1 36
4 -> 5 1 36
4 -> 6 1 36
5 -> 1 1 36
5 -> 2 1 36
5 -> 3 1 36
5 -> 4 1 36
5 -> 5 1 36
5 -> 6 1 36
6 -> 1 1 36
6 -> 2 1 36
6 -> 3 1 36
6 -> 4 1 36
6 -> 5 1 36
6 -> 6 1 36

Die Wahrscheinlichkeit für 'Mäxle' ist:

P('1'-'2') + P('2'-'1')
= 1 36 + 1 36 = 1 18

Die Wahrscheinlichkeit für 'Pasch' ist:

P('1'-'1') + P('2'-'2') + P('3'-'3') + P('4'-'4') + P('5'-'5') + P('6'-'6')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 1 6

Die Wahrscheinlichkeit für '60er' ist:

P('1'-'6') + P('2'-'6') + P('3'-'6') + P('4'-'6') + P('5'-'6') + P('6'-'1') + P('6'-'2') + P('6'-'3') + P('6'-'4') + P('6'-'5')
= 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 + 1 36 = 5 18

Die Zufallsgröße X beschreibt den durch die beiden Würfel ausbezahlten Euro-Betrag.

Erwartungswert der Zufallsgröße X

Ereignis Mäxle Pasch 60er
Zufallsgröße xi 16 7 1
P(X=xi) 1 18 1 6 5 18
xi ⋅ P(X=xi) 8 9 7 6 5 18

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 16⋅ 1 18 + 7⋅ 1 6 + 1⋅ 5 18

= 8 9 + 7 6 + 5 18
= 16 18 + 21 18 + 5 18
= 42 18
= 7 3

2.33