Aufgabenbeispiele von Erwartungswert
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zufallsgröße (ohne Wahrscheinlichkeit)
Beispiel:
In einer Urne sind zwei Kugeln, die mit der Zahl 4 beschriftet sind und fünf Kugeln, die mit der Zahl 9 beschriftet sind. Es werden zwei Kugeln mit Zurücklegen gezogen.Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Gib alle Werte an, die die Zufallsgröße X annehmen kann.
Für die Zufallsgröße X: 'Produkt der beiden Kugeln' sind folgende Werte möglich:
Zufallsgröße X | 16 | 36 | 81 |
zugehörige Ereignisse | 4 - 4 | 4 - 9 9 - 4 | 9 - 9 |
Zufallsgröße WS-Verteilung
Beispiel:
Eine (faire) Münze wird 3 mal geworfen. Die Zufallsgröße X beschreibt die Anzahl der Würfe, bei denen "Zahl" erscheint. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Anzahl von Zahl-Würfen' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Ergebnisse | 0 → 0 → 0 | 0 → 0 → 1 0 → 1 → 0 1 → 0 → 0 | 0 → 1 → 1 1 → 0 → 1 1 → 1 → 0 | 1 → 1 → 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 0 | X = 1 | X = 2 | X = 3 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ | ⋅ ⋅ |
= | + + | + + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 0 | 1 | 2 | 3 |
P(X=k) |
Zufallsgr. WS-Vert. (auch ohne zur.)
Beispiel:
In einer Urne sind sechs Kugeln, die mit der Zahl 1 beschriftet, zwei Kugeln, die mit der Zahl 6 sind, und vier Kugeln, die mit der Zahl 8 beschriftet sind. Es werden zwei Kugeln ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Differenz zwischen der größten und der anderen Zahl der beiden gezogenen Kugeln. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
Für die Zufallsgröße X: 'Differenz der beiden Kugeln' sind folgende Werte möglich:
Zufallsgröße X | X = 0 | X = 2 | X = 5 | X = 7 |
zugehörige Ergebnisse | 1 → 1 6 → 6 8 → 8 | 6 → 8 8 → 6 | 1 → 6 6 → 1 | 1 → 8 8 → 1 |
Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.
Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.
Zufallsgröße X | X = 0 | X = 2 | X = 5 | X = 7 |
zugehörige Wahrscheinlichkeit P(X) | ⋅ + ⋅ + ⋅ | ⋅ + ⋅ | ⋅ + ⋅ | ⋅ + ⋅ |
= | + + | + | + | + |
Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:
Zufallsgröße X | 0 | 2 | 5 | 7 |
P(X=k) |
Zufallsgr. WS-Vert. (ziehen bis erstmals ...)
Beispiel:
In einer Urne sind 6 rote und 2 blaue Kugeln. Es soll (ohne zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Die Zufallsgröße X beschreibt dabei die Anzahl der Ziehungen, bis die erste rote Kugel gezogen worden ist. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)
Da ja nur 2 Kugeln vom Typ 'blau' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Kugeln vom Typ 'blau' bereits gezogen und damit weg sind) eine Kugel vom Typ 'rot' gezogen werden.
Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.
Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:
Zufallsgröße X | 1 | 2 | 3 |
P(X=k) |
Zufallsgröße rückwärts
Beispiel:
Ein Glücksrad hat drei Sektoren, die mit den Zahlen 1, 2 und 3 beschriftet sind. Es wird zwei mal gedreht. Die Zufallsgröße X beschreibt dabei das Produkt der Zahlen die bei den beiden Glücksraddrehungen erscheinen. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie groß müssen jeweils die Winkel der Sektoren sein?
Zufallsgröße X | 1 | 2 | 3 | 4 | 6 | 9 |
P(X=k) | ? | ? | ? | ? |
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Für X=1 gibt es nur das Ereignis: '1'-'1', also dass zwei mal hintereinander '1' kommt.
Wenn p1 die Wahrscheinlichkeit von '1' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '1' kommt, gelten: P(X=1) = p1 ⋅ p1 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=1) = heraus lesen, also muss gelten:
p1 ⋅ p1 = (p1)2 = und somit p1 = .
Ebenso gibt es für X=9 nur das Ereignis: '3'-'3', also dass zwei mal hintereinander '3' kommt.
Wenn p3 die Wahrscheinlichkeit von '3' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '3' kommt, gelten: P(X=9) = p3 ⋅ p3 (siehe Baumdiagramm).
Aus der Tabelle können wir aber P(X=9) = heraus lesen, also muss gelten:
p3 ⋅ p3 = (p3)2 = und somit p3 = .
Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also
p2 = 1 - p1 - p3 = = =
Um nun noch die Mittelpunktswinkel der drei Sektoren zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 360° multiplizieren, weil ja für die Wahrscheinlichkeit eines Sektors mit Mittelpunktswinkel α gilt: p =
Somit erhalten wir:
α1 = ⋅ 360° = 20°
α2 = ⋅ 360° = 10°
α3 = ⋅ 360° = 330°
Erwartungswerte
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Die Zufallsgröße X beschreibt die Punktezahl auf einem Sektor des Glücksrads.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 4 | 12 | 25 |
Zufallsgröße xi | 1 | 4 | 12 | 25 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 4⋅ + 12⋅ + 25⋅
=
=
=
=
≈ 10.5
Faires Spiel - fehlende Auszahlung best.
Beispiel:
Ein Spieler darf aus einer Urne mit 8 blauen, 5 roten, 6 grünen und 5 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 6€. Bei rot erhält er 24€ und bei grün erhält er 12€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 20€ beträgt ?
Die Zufallsgröße X beschreibt die Auszahlung.
Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.
Erwartungswerte der Zufallsgrößen X und Y
Ereignis | blau | rot | grün | weiß |
Zufallsgröße xi | 6 | 24 | 12 | x |
Zufallsgröße yi (Gewinn) | -14 | 4 | -8 | x-20 |
P(X=xi) | ||||
xi ⋅ P(X=xi) | ⋅ x | |||
yi ⋅ P(Y=yi) | ⋅(x-20) |
Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:
Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...
E(X) = 20
= 20
= 20= | |||
= | |⋅ 24 | ||
= | |||
= | | | ||
= | |: | ||
= |
... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:
E(Y) = 0
= 0 = 0= | |||
= | |||
= | |⋅ 24 | ||
= | |||
= | | | ||
= | |: | ||
= |
In beiden Fällen ist also der gesuchte Betrag: 48€
Erwartungswert ganz offen
Beispiel:
Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:
- Das Spiel mit dem Glücksrad muss fair sein
- Der Einsatz soll 10€ betragen
- Der minimale Auszahlungsbetrag soll 8€ sein
- Der maximale Auszahlungsbetrag soll soll 47€ sein
- Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Eine (von vielen möglichen) Lösungen:
Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 8 | 47 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 37 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 8 | 47 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 37 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von +=
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1-
=.
Diese wird auf die beiden verbleibenden Optionen verteilt:
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 8 | 47 | ||
Y Gewinn (Ausz. - Einsatz) | -2 | 37 | ||
P(X) = P(Y) | ||||
Y ⋅ P(Y) |
Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich ) setzt.
Feld1 | Feld2 | Feld3 | Feld4 | |
X (z.B. Auszahlung) | 8 | 9 | 11 | 47 |
Y Gewinn (Ausz. - Einsatz) | -2 | -1 | 1 | 37 |
P(X) = P(Y) | ||||
Winkel | 180° | 85.14° | 85.14° | 9.73° |
Y ⋅ P(Y) |
Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:
E(Y)= -2⋅ + -1⋅ + 1⋅ + 37⋅
=
=
=
=
Erwartungswerte bei 'Ziehen bis erstmals ...'
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st:
Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st:
Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.
Erwartungswert der Zufallsgröße X
Ereignis | 1 | 2 | 3 | 4 |
Zufallsgröße xi | 1 | 2 | 3 | 4 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1⋅ + 2⋅ + 3⋅ + 4⋅
=
=
=
=
≈ 1.12
Erwartungswerte mit gesuchten Anzahlen im WS-Baum
Beispiel:
Ein Spieler darf aus einer Urne mit 9 blauen und 3 roten Kugeln 3 Kugeln ohne zurücklegen ziehen. Zieht er dabei 3 blaue Kugeln, so erhält er 13€, bei 2 blauen bekommt er noch 5€, bei einer 3€. Ist gar keine blaue Kugel dabei, erhält er 0€. Welchen Gewinn kann er erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
blau -> blau -> blau | |
blau -> blau -> rot | |
blau -> rot -> blau | |
blau -> rot -> rot | |
rot -> blau -> blau | |
rot -> blau -> rot | |
rot -> rot -> blau | |
rot -> rot -> rot |
Die Wahrscheinlichkeit für 0 mal 'blau' ist:
Die Wahrscheinlichkeit für 1 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 2 mal 'blau' ist: + + =
Die Wahrscheinlichkeit für 3 mal 'blau' ist:
Die Zufallsgröße X beschreibt den ausbezahlten Euro-Betrag.
Erwartungswert der Zufallsgröße X
Ereignis | 0 | 1 | 2 | 3 |
Zufallsgröße xi | 0 | 3 | 5 | 13 |
P(X=xi) | ||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 0⋅ + 3⋅ + 5⋅ + 13⋅
=
=
=
≈ 7.79
Erwartungswerte mit best. Optionen im WS-Baum
Beispiel:
In einem Stapel Karten mit 10 Asse, 3 Könige, 2 Damen und 5 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 400, 2 Damen 180 und 2 Buben 70 Punkte. Außerdem gibt es für ein Paar aus Dame und König 20 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)
Wahrscheinlichkeiten für die verschiedenen Ausgänge
Ereignis | P |
---|---|
As -> As | |
As -> König | |
As -> Dame | |
As -> Bube | |
König -> As | |
König -> König | |
König -> Dame | |
König -> Bube | |
Dame -> As | |
Dame -> König | |
Dame -> Dame | |
Dame -> Bube | |
Bube -> As | |
Bube -> König | |
Bube -> Dame | |
Bube -> Bube |
Die Wahrscheinlichkeit für '2 Asse' ist:
P('As'-'As')
=
Die Wahrscheinlichkeit für '2 Könige' ist:
P('König'-'König')
=
Die Wahrscheinlichkeit für '2 Damen' ist:
P('Dame'-'Dame')
=
Die Wahrscheinlichkeit für '2 Buben' ist:
P('Bube'-'Bube')
=
Die Wahrscheinlichkeit für 'Paar (D&K)' ist:
P('König'-'Dame') + P('Dame'-'König')
= + =
Die Zufallsgröße X beschreibt die gewonnenen Punkte.
Erwartungswert der Zufallsgröße X
Ereignis | 2 Asse | 2 Könige | 2 Damen | 2 Buben | Paar (D&K) |
Zufallsgröße xi | 1000 | 400 | 180 | 70 | 20 |
P(X=xi) | |||||
xi ⋅ P(X=xi) |
Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:
E(X)= 1000⋅ + 400⋅ + 180⋅ + 70⋅ + 20⋅
=
=
≈ 248.42