Aufgabenbeispiele von Tests

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hypothesen-Test linksseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen eine Trefferwahrscheinlichkeit von p=0,65. Sein Trainer glaubt, dass er sich dabei überschätzt. Um das zu überprüfen, muss der Basketballspieler 35 mal werfen. In welchem Intervall müssen die Treffer liegen, dass sich der Trainer auf einem Signifikanzniveau von 0,1% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit, dass der Trainer aufgrund des Signifikanztests die Trefferwahrscheinlichkeit irrtümlicherweise als niedriger annimmt?

Lösung einblenden
kP(X≤k)
......
80
90
100
110.0001
120.0002
130.0007
140.0022
150.0061
160.015
170.0336
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.65 zu verwerfen. Der Test soll bestätigen, dass p<0.65 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(35,0.65,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 13 weniger als 0.1% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.65 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.65 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0007 =0.07% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;13]

Nicht-Ablehnungsbereich von H0: [14;35]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;13], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [14;35], so muss die Nullhypothese beibehalten werden.

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test rechtsseitig

Beispiel:

Die Kursstufenschüler Maxi und Noah verbringen ihr Pausen leidenschaftlich gerne mit einem Bäckertüten-Mülleimer-Contest. Dabei geht es darum, eine zusammengeknüllte Bäckertüte in den an der entferntesten Ecke stehenden Altpapierbehälter zu treffen. Der interessiert zuschauende Mathelehrer rät ihnen doch etwas näher an den Mülleimer ran zu gehen, weil sie eh höchstens jedes zehnte mal treffen. Empfindlich in ihre Macho-Ehre verletzt, beschließen sie darauf hin ein Test mit 71 Würfen durchzuführen, der die absurd niedrige vom Lehrer behauptete Trefferquote auf einem Signifikanzniveau von 0,1% widerlegen soll. In welchem Bereich müsste die Trefferzahl liegen, um über den Mathelehrer statistisch belegt zu triumphieren zu können? Wie hoch ist dann die Irrtumswahrscheinlichkeit, dass die Trefferqutoe von höchstens 10% fälschlicherweise abgelehnt wurde?

Lösung einblenden
kP(X≤k)
......
110.9516
120.9772
130.9901
140.996
150.9985
160.9995
170.9998
180.9999
191
201
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≤ 0.1 zu verwerfen. Der Test soll bestätigen, dass p>0.1 ist, also ist es ein rechtsseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 0.1% ist.

Das heißt, dass der Nicht-Ablehnungsbereich von H0 (hier blau eingefärbt) auf der linken Seite mindestens 1-0.001= 0.999 Wahrscheinlichkeit auf sich vereinen muss.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(71,0.1,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 16 erstmals mindestens 99.9% der Gesamt-Wahrscheinlichkeit ausmachen.

Nicht-Ablehnungsbereich von H0: [0;16]

Dies bedeutet für den eigentlich gesuchten Ablehnungsbereich H0 dass dieser erst bei 17 Treffern beginnt.

Ablehnungsbereich von H0: [17;71]

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.1 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p>0.1 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0005 =0.05% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [17;71], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [0;16], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Hypothesen-Test linksseitig

Beispiel:

Ein Basketballspieler behauptet, er habe bei Freiwürfen eine Trefferwahrscheinlichkeit von p=0,45. Sein Trainer glaubt, dass er sich dabei überschätzt. Um das zu überprüfen, muss der Basketballspieler 35 mal werfen. In welchem Intervall müssen die Treffer liegen, dass sich der Trainer auf einem Signifikanzniveau von 5% bestätigt sieht? Wie hoch bleibt dabei die Irrtumswahrscheinlichkeit, dass der Trainer aufgrund des Signifikanztests die Trefferwahrscheinlichkeit irrtümlicherweise als niedriger annimmt?

Lösung einblenden
kP(X≤k)
......
50.0001
60.0005
70.0019
80.0057
90.0152
100.0354
110.0729
120.1344
130.2233
140.3376
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.45 zu verwerfen. Der Test soll bestätigen, dass p<0.45 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(35,0.45,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 10 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.45 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.45 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0354 =3.54% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;10]

Nicht-Ablehnungsbereich von H0: [11;35]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;10], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [11;35], so muss die Nullhypothese beibehalten werden.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 2. Art

Beispiel:

Eine Pharmafirma behauptet, dass durch eine Verbesserung der Rezeptur die Nebenwirkungen eines Medikament unter p=0,16 gesunken ist. Um dies nachzuweisen, soll ein 99-stufiger Test mit einer maximalen Irrtumswahrscheinlichkeit von 5% durchgeführt werden. a) In welchem Intervall muss hierfür die Anzahl der Nebenwirkungen liegen? b) In Wirklichkeit liegt die Wahrscheinlickeit für Nebenwirkungen bei p=0,06. Wie groß ist nun die Wahrscheinlichkeit, dass bei dem Test trotzdem die Anzahl der Nebenwirkungen nicht in den Ablehnungsbereich gefallen ist und somit - irrtümlicherweise - die falsche Nullhypothese nicht verworfen wurde?

Lösung einblenden
kP(X≤k)
......
40.0002
50.0008
60.0025
70.0068
80.0163
90.0345
100.0657
110.1138
120.1811
130.2668
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p ≥ 0.16 zu verwerfen. Der Test soll bestätigen, dass p<0.16 ist, also ist es ein linksseitiger Hypothesentest. Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken Seite so, dass die Gesamt-Wahrscheinlichkeit dieses Bereichs gerade noch kleiner als das Signifikanzniveau 5% ist.

Schaut man dazu die kumulierte Binomialverteilung an (TI: y1=binomcdf(99,0.16,X) ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 9 weniger als 5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in diesem Intervall, wäre das bei Gültigkeit von Nullhypothese H0: p=0.16 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p<0.16 als statistisch abgesichert betrachten darf. Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von 0.0345 =3.45% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;9]

Nicht-Ablehnungsbereich von H0: [10;99]

Entscheidungsregel: Fällt die Anzahl der Treffer in den Ablehnungsbereich von H0: [0;9], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [10;99], so muss die Nullhypothese beibehalten werden.

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

In dieser Aufgabe ist ja aber H0:p=0.16 falsch, weil ja in Wirklichkeit p=0.06 ist.

Gesucht ist nun die Wahrscheinlichkeit, dass bei dem Test die Trefferanzahl nicht in den Ablehnungsbereich gefallen ist, sondern in den Bereich von 10 bis 99, so dass H0 (irrtümlicherweise) nicht verworfen wurde.

Diese Wahrscheinlichkeit (mit dem richtigen p=0.06) beträgt nun: P0.0699 (X10) =1- P0.0699 (X9) ≈ 1-0.9265 ≈ 0.0735

Mit 7.35% Wahrscheinlichkeit landet also das Ergebnis des Test im Nicht-Ablehnungsbereich (im Histogramm oben: blauer Bereich), so dass die falsche Nullhypothese nicht verworfen wird.

zweiseitiger Test

Beispiel:

Ein Roulettetisch scheint ungleichmäßig zu laufen. Ein Spieler bezweifelt deswegen, dass die vorgegebene Wahrscheinlichkeit der grünen Null von p= 1 37 wirklich stimmt. Diese Vermutung soll durch einen zweiseitigen Test mit 210 Drehungen des Roulettes untermauert werden. Die maximale Irrtumswahrscheinlichkeit α soll dabei 5% betragen.
In welchen Bereichen muss die Häufigkeit der grünen Null bei der Stichprobe liegen, um die Nullhypothese p= 1 37 statistisch untermauert ablehnen zu können? Wie groß ist in diesem Fall die Irrtumswahrscheinlichkeit?

Lösung einblenden
kP(X≤k)
00.0032
10.0217
20.0754
30.1788
40.3274
......

Dieser Hypothesentest wird gemacht um die Nullhypothese H0: p = 1 37 zu verwerfen. Der Test soll bestätigen, dass p< 1 37 oder p> 1 37 ist, es ist ein zweiseitiger Hypothesentest.

Wir suchen somit den Ablehnungsbereich der Nullhypothese H0 auf der linken und auf der rechten Seite so, dass die Gesamt-Wahrscheinlichkeit dieser beiden Bereiche gerade noch kleiner als das Signifikanzniveau 5% ist.

Dazu teilen wir das Signifikanzniveau 5% gerecht auf 2.5% auf der linken und 2.5% auf der rechten Seite.

Linke Seite:

Schaut man dazu die kumulierte Binomialverteilung an (TI: binomcdf mit n=210 und p= 1 37 ), so erkennt man, dass die Trefferzahlen links im Interval zwischen 0 und 1 gerade noch weniger als 2.5% der Gesamt-Wahrscheinlichkeit auf sich vereinen. Damit haben wir den linken Teil des Ablehnungsbereichs

kP(X≤k)
......
90.9392
100.9713
110.9875
120.9949
130.9981
......

Rechte Seite:

Auch am rechten Rand darf der Ablehnungsbereich höchstens 2.5% Gesamtwahrscheinlikeit auf sich vereinen, das bedeutet, dass der gesamte Bereich links vom rechten Ablehnungsbereich mindestens 1 - 0.025 = 0.975 als Wahrscheinlichkeit haben muss.

In der Tabelle links erkennt man, dass bei k=11 erstmals P 1 37 210 (Xk) ≥ 0.975 ist (links in der Tabelle in blau dargestellt). Das bedeutet, dass das Intervall von 12 bis 210 das größte ist, das am rechten Rand eine Gesamtwahrscheinlichkeit von unter 2.5% hat.

Der Ablehnungsbereich auf der rechten Seite ist somit von 12 bis 210.

Kommt nun bei einer Stichprobe/Zufallsexperiment eine Trefferzahl in eines dieser beiden Intervalle, so wäre das bei Gültigkeit der Nullhypothese H0: p= 1 37 so unwahrscheinlich, dass man diese Nullhypothese verwerfen kann und somit p≠ 1 37 als statistisch abgesichert betrachten darf.

Dabei bleibt jedoch eine (Rest-) Irrtumswahrscheinlichkeit von P 1 37 210 (X1) = 0.0217 auf der linken Seite und P 1 37 210 (X12) = 1-0.9875 = 0.0125 auf der rechten Seite.
Insgesamt ist somit die Irrtumswahrscheinlichkeit PIrr = 0.0217 + 0.0125 = 0.0342 =3.42% (dass die Nullhypothese doch stimmt und wir sie irrtümlicherweise verworfen haben)

Ablehnungsbereich von H0: [0;1] und [12;210]

Nicht-Ablehnungsbereich von H0: [2;11]

Entscheidungsregel: Fällt die Anzahl der Treffer in einen der Ablehnungsbereiche von H0: [0;1] oder [12;210], so ist die Nullhypothese zu verwerfen, fällt die Anzahl der Treffer in den Nicht-Ablehnungsbereich von H0: [2;11], so muss die Nullhypothese beibehalten werden.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Fehler 1. Art beurteilen

Beispiel:

Eine große Handelskette überlegt, ob sie eine Kunden-App entwickeln und einführen soll. Die Finanzabteilung hat dabei herausgefunden, dass sich die Entwicklung und Bewerbung solch einer App nur dann rechnet, wenn sich auch mindestens 25% der Kunden die App aufs Smartphone installiert. Deswegen beschließt die Geschäftsführung, einen Hypothesentest in Form einer Befragung von 300 Kunden durchzuführen. Dabei soll das Risiko auf 20% begrenzt werden, dass aufgrund des Tests die App gar nicht entwickelt wird, obwohl diese wirtschaftlich sinnvoll gewesen wäre.

Entscheide dich, welche der angebotenen Nullhypothesen für diesen Test verwendet werden muss.

Lösung einblenden

Wir betrachten jede der 4 möglichen Nullhypothesen im Detail:

1. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 20%

error

Die Nullhypothese H0: " ... mindestens 20%", also p ≥ 0.2 macht keinen Sinn, weil die 20%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=25% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

2. Der Prozentsatz der Kunden, die die App installieren, beträgt mindestens 25%

ok

Wenn die Nullhypothese H0: " ... mindestens 25%", also p ≥ 0.25 lautet, soll ja der Test "bestätigen", dass p < 0.25 ist - also ist es ein linksseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im linken (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 20% sein muss, falls die Nullhypothese H0: p ≥ 0.25 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≥ 0.25 abzulehnen, obwohl es stimmt, ist somit kleiner als 20%.

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≥ 0.25 irrtümlicherweise abzulehnen, damit p < 0.25 anzunehmen (obwohl dies falsch ist), und somit die App gar nicht zu entwickeln, obwohl dies wirtschaftlich sinnvoll wäre, auf unter 20% begrenzt werden könnte.

Mit dieser Nullhypothese kann also ein Test die gegebenen Vorgaben erfüllen.

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

3. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 20%

error

Die Nullhypothese H0: " ... höchstens 20%", also p ≤ 0.2 macht keinen Sinn, weil die 20%" ja die maximale Irrtumswahrscheinlichkeit angibt, also wie groß höchstens die Wahrscheinlichkeit ist, dass einen das Ergebnis des Hypothesentests zu einer falschen Annahme führt.

In der Nullhypothese muss es doch aber um die eigentlich angezweifelte Wahrscheinlichkeit p=25% gehen, also den Prozentsatz der Kunden, die die App installieren werden.

4. Der Prozentsatz der Kunden, die die App installieren, beträgt höchstens 25%

error

Wenn die Nullhypothese H0: " ... höchstens 25%", also p ≤ 0.25 lautet, soll ja der Test "bestätigen", dass p > 0.25 ist - also ist es ein rechtsseitiger Hypothesentest.

Das bedeutet, dass die Wahrscheinlichkeit eines Ergebnisses des Test im rechten (orangen) Ablehnungsbereich kleiner als das Signifikanzniveau α = 20% sein muss, falls die Nullhypothese H0: p ≤ 0.25 doch stimmen sollte.

Die Wahrscheinlichkeit, p ≤ 0.25 abzulehnen, obwohl es stimmt, ist somit kleiner als 20%

In diesem Fall würde das bedeuten, dass die Wahrscheinlichkeit p ≤ 0.25 irrtümlicherweise abzulehnen, damit p > 0.25 anzunehmen (obwohl dies falsch ist), und somit die App zu entwickeln und zu bewerben, obwohl die Kosten nie wieder eingebracht werden, weil zu wenige Kunden die App installieren werden, auf unter 20% begrenzt werden könnte.

Mit dieser Nullhypothese würde man also ein anderes Risiko absichern, als das im Aufgabentext geforderte.

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94