Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Beim Roulette gibt es 18 rote Felder, 18 scharze Felder und 1 grünes Feld (für die Null). Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal schwarz"?

Lösung einblenden
EreignisP
rot -> rot 324 1369
rot -> schwarz 324 1369
rot -> grün 18 1369
schwarz -> rot 324 1369
schwarz -> schwarz 324 1369
schwarz -> grün 18 1369
grün -> rot 18 1369
grün -> schwarz 18 1369
grün -> grün 1 1369

Einzel-Wahrscheinlichkeiten: P("rot")= 18 37 ; P("schwarz")= 18 37 ; P("grün")= 1 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'schwarz' (P= 324 1369 )
  • 'schwarz'-'rot' (P= 324 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

324 1369 + 324 1369 = 648 1369


Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 30 Schüler, in der 8b 30 Schüler und in der in der 8c 30 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 30 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 30 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 30 ⋅ 30 = 900 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 30 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 30 ⋅ 30 ⋅ 30 = 27000 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 12 blaue und 14 gelbe Kugeln. Es werden 6 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 2 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 26 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 6 der insgesamt 26 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 6 von 26 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 26 6 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 12 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 2 gezogenen blauen unter den 12 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "2 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 12 blauen Kugeln ziehen", also ( 12 2 ) Möglichkeiten.


Es gibt ( 14 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 14 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 14 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 14 gelben Kugeln ziehen", also ( 14 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 12 2 ) ( 14 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "6 Kugeln aus 26 Kugeln ziehen" ( 26 6 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 12 2 ) ( 14 4 ) ( 26 6 ) = 66066 230230 0,287 = 28,7%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 4 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 7 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 74 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 4 verschiedene Zahlen auftreten.


Es gibt ( 7 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 7 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 4 Zahlen unter den 7 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 4 Zahlen von 7 möglichen anzukreuzen. Dies sind ( 7 4 ) Möglichkeiten verschiedene 4er-Pakete aus 7 Zahlen zu packen.

Bei jeder dieser ( 7 4 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 4! = 4⋅3⋅2⋅1 Möglichkeiten. (4 Möglichkeiten für das erste Feld, 3 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 7 4 ) ⋅4! = 840 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 7 4 ) ⋅4! 7⋅7⋅7⋅7 = 840 2401 0,3499 = 34,99%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 9 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 9 22 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 9 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 9 n + 9

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 8

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 9 9 n + 8

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 9 n +9 · n n +8 . Da diese Wahrscheinlichkeit ja 9 22 ist, gilt somit:

D=R\{ -9 ; -8 }

18n ( n +9 ) ( n +8 ) = 9 22

Wir multiplizieren den Nenner ( n +9 ) ( n +8 ) weg!

18n ( n +9 ) · ( n +8 ) = 9 22 |⋅( ( n +9 ) ( n +8 ) )
18n ( n +9 ) · ( n +8 ) · ( n +9 ) ( n +8 ) = 9 22 · ( n +9 ) ( n +8 )
18 n ( n +9 ) n +9 = 9 22 ( n +9 ) ( n +8 )
18n = 9 22 ( n +9 ) ( n +8 )
18n = 9 22 n 2 + 153 22 n + 324 11
18n = 9 22 n 2 + 153 22 n + 324 11 |⋅ 22
396n = 22( 9 22 n 2 + 153 22 n + 324 11 )
396n = 9 n 2 +153n +648 | -9 n 2 -153n -648
-9 n 2 +243n -648 = 0 |:9

- n 2 +27n -72 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = -27 ± 27 2 -4 · ( -1 ) · ( -72 ) 2( -1 )

n1,2 = -27 ± 729 -288 -2

n1,2 = -27 ± 441 -2

n1 = -27 + 441 -2 = -27 +21 -2 = -6 -2 = 3

n2 = -27 - 441 -2 = -27 -21 -2 = -48 -2 = 24

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- n 2 +27n -72 = 0 |: -1

n 2 -27n +72 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 27 2 ) 2 - 72 = 729 4 - 72 = 729 4 - 288 4 = 441 4

x1,2 = 27 2 ± 441 4

x1 = 27 2 - 21 2 = 6 2 = 3

x2 = 27 2 + 21 2 = 48 2 = 24

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 3 oder 24 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 3 rote und 2 blaue Kugeln. Im Behälter B sind 6 rote und 4 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 7 rote und 4 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 3 5 6 55 = 18 275

2. Möglichkeit: 6 rote und 5 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 2 5 2 11 = 4 55

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 18 275 + 4 55 = 38 275 .