Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 3 vom Typ Kreuz, 9 vom Typ Herz, 2 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 3 190
Kreuz -> Herz 27 380
Kreuz -> Pik 3 190
Kreuz -> Karo 9 190
Herz -> Kreuz 27 380
Herz -> Herz 18 95
Herz -> Pik 9 190
Herz -> Karo 27 190
Pik -> Kreuz 3 190
Pik -> Herz 9 190
Pik -> Pik 1 190
Pik -> Karo 3 95
Karo -> Kreuz 9 190
Karo -> Herz 27 190
Karo -> Pik 3 95
Karo -> Karo 3 38

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 3 20 ; P("Herz")= 9 20 ; P("Pik")= 1 10 ; P("Karo")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 3 190 )
'Herz'-'Herz' (P= 18 95 )
'Pik'-'Pik' (P= 1 190 )
'Karo'-'Karo' (P= 3 38 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 190 + 18 95 + 1 190 + 3 38 = 11 38


Kombinatorik

Beispiel:

Eine bestimmte Variable soll im Computer mit 9 Bit abgespeichert werden. Ein Bit kann immer nur die Werte 0 und 1 annehmen. Wie viele Möglichkeiten gibt es die Variable mit verschiedenen Werten zu belegen?

Lösung einblenden

Bei jedem der 9 'Zufallsversuche' gibt es 2 Möglichkeiten. Dabei ist jedes Ergebnis im ersten 'Durchgang' mit jedem Ergebnis im zweiten Durchgang kombinierbar. Man könnte also alles in einem Baumdiagramm darstellen, das sich in jeder der 9 Ebenen immer 2-fach verzweigt.

Es entstehen so also 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 29 = 512 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 13 blaue, 12 gelbe und 11 grüne Kugeln. Es werden 20 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Kugeln blau und genau 8 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 36 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 20 der insgesamt 36 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 20 von 36 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 36 20 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 13 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen blauen unter den 13 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 blauen Kugeln ziehen", also ( 13 5 ) Möglichkeiten.


Es gibt ( 12 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen gelben unter den 12 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 12 gelben Kugeln ziehen", also ( 12 7 ) Möglichkeiten.


Es gibt ( 11 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen grünen unter den 11 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 grünen Kugeln ziehen", also ( 11 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 13 5 ) ( 12 7 ) ( 11 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "20 Kugeln aus 36 Kugeln ziehen" ( 36 20 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 13 5 ) ( 12 7 ) ( 11 8 ) ( 36 20 ) 0,023 = 2,3%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 6 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 10 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 10 Möglichkeiten gibt, die sich mit den 10 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 10⋅10⋅...⋅10 = 106 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 6 verschiedene Zahlen auftreten.


Es gibt ( 10 6 ) verschiedene Möglichkeiten 6 Kreuzchen auf 10 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 6 Zahlen unter den 10 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 6 Zahlen von 10 möglichen anzukreuzen. Dies sind ( 10 6 ) Möglichkeiten verschiedene 6er-Pakete aus 10 Zahlen zu packen.

Bei jeder dieser ( 10 6 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 10 6 ) ⋅6! = 151200 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 10 6 ) ⋅6! 10⋅10⋅10⋅10⋅10⋅10 = 151200 1000000 0,1512 = 15,12%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 3 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 1 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 3 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 3 n + 3

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 2 n + 2

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 3 n +3 · 2 n +2 . Da diese Wahrscheinlichkeit ja 1 15 ist, gilt somit:

D=R\{ -3 ; -2 }

6 ( n +3 ) ( n +2 ) = 1 15

Wir multiplizieren den Nenner ( n +3 ) · ( n +2 ) weg!

6 ( n +3 ) · ( n +2 ) = 1 15 |⋅( ( n +3 ) · ( n +2 ) )
6 ( n +3 ) · ( n +2 ) · ( n +3 ) · ( n +2 ) = 1 15 · ( n +3 ) · ( n +2 )
6 n +3 n +3 = 1 15 ( n +3 ) ( n +2 )
6 = 1 15 ( n +3 ) ( n +2 )
6 = 1 15 n 2 + 1 3 n + 2 5
6 = 1 15 n 2 + 1 3 n + 2 5 |⋅ 15
90 = 15( 1 15 n 2 + 1 3 n + 2 5 )
90 = n 2 +5n +6 | - n 2 -5n -6

- n 2 -5n +84 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +5 ± ( -5 ) 2 -4 · ( -1 ) · 84 2( -1 )

n1,2 = +5 ± 25 +336 -2

n1,2 = +5 ± 361 -2

n1 = 5 + 361 -2 = 5 +19 -2 = 24 -2 = -12

n2 = 5 - 361 -2 = 5 -19 -2 = -14 -2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- n 2 -5n +84 = 0 |: -1

n 2 +5n -84 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -84 ) = 25 4 + 84 = 25 4 + 336 4 = 361 4

x1,2 = - 5 2 ± 361 4

x1 = - 5 2 - 19 2 = - 24 2 = -12

x2 = - 5 2 + 19 2 = 14 2 = 7

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 7 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 7 Herz- und 3 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 8 Herz und 3 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 3 11 2 10 = 3 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 5 3 55 = 9 275

2. Möglichkeit: 7 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 5 6 55 = 12 275

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 9 275 + 12 275 = 21 275 .