Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal 6er' alle Möglichkeiten enthalten, außer eben kein '6er' bzw. 0 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal '6er')=1- 25 36 = 11 36

EreignisP
6er -> 6er 1 36
6er -> nicht 6er 5 36
nicht 6er -> 6er 5 36
nicht 6er -> nicht 6er 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("nicht 6er")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er' (P= 5 36 )
  • 'nicht 6er'-'6er' (P= 5 36 )
  • '6er'-'6er' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 1 36 = 11 36


Kombinatorik

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 2 Schülerinnen. Diese möchte sie zufällig aus der 22-köpfigen Sportgruppe losen. Wie viele verschiedene 2er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 22 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 21 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 22 ⋅ 21 = 462 Möglichkeiten, die 22 Möglichkeiten (Schülerin) auf die 2 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welche Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 2 ⋅ 1 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 462 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 462 2 = 231 Möglichkeiten für 2er-Gruppen, die aus 22 Elementen (Schülerin) gebildet werden.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 11 blaue und 14 gelbe Kugeln. Es werden 7 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 25 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 7 der insgesamt 25 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 7 von 25 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 25 7 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also ( 11 3 ) Möglichkeiten.


Es gibt ( 14 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 14 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 14 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 14 gelben Kugeln ziehen", also ( 14 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 3 ) ( 14 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "7 Kugeln aus 25 Kugeln ziehen" ( 25 7 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 3 ) ( 14 4 ) ( 25 7 ) = 165165 480700 0,3436 = 34,36%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 8 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 7 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass darin alle 7 Zahlen enthalten sind?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 8 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 8 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Zahlenschlossräder) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Zahlenschlossräder als Zahlen gibt, muss ja eine Zahl bei zwei Zahlenschlossräder stehen).
Hierfür gibt es ( 8 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit ( 8 2 ) ⋅ 7 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 7 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 6 Felder (Zahlenschlossräder), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 8 2 ) ⋅ 7 ⋅ 6⋅5⋅4⋅3⋅2⋅1 = 141120 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 2 ) ⋅ 7 ⋅ 6⋅5⋅4⋅3⋅2⋅1 7⋅7⋅7⋅7⋅7⋅7⋅7⋅7 = 141120 5764801 0,0245 = 2,45%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 3 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, P = 7 15 . Bestimme eine mögliche Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 3 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 3 n + 3

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n n + 2

Zwei verschiedenfarbige Kugeln zu ziehen kann ja aber auch erst blau und dann rot bedeuten. Die Wahrscheinlichkeit für diesem Fall wäre dann n n + 3 3 n + 2

Die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen ist also 2 3 n +3 · n n +2 . Da diese Wahrscheinlichkeit ja 7 15 ist, gilt somit:

D=R\{ -3 ; -2 }

6n ( n +3 ) ( n +2 ) = 7 15

Wir multiplizieren den Nenner ( n +3 ) ( n +2 ) weg!

6n ( n +3 ) · ( n +2 ) = 7 15 |⋅( ( n +3 ) ( n +2 ) )
6n ( n +3 ) · ( n +2 ) · ( n +3 ) ( n +2 ) = 7 15 · ( n +3 ) ( n +2 )
6 n ( n +3 ) n +3 = 7 15 ( n +3 ) ( n +2 )
6n = 7 15 ( n +3 ) ( n +2 )
6n = 7 15 n 2 + 7 3 n + 14 5
6n = 7 15 n 2 + 7 3 n + 14 5 |⋅ 15
90n = 15( 7 15 n 2 + 7 3 n + 14 5 )
90n = 7 n 2 +35n +42 | -7 n 2 -35n -42

-7 n 2 +55n -42 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = -55 ± 55 2 -4 · ( -7 ) · ( -42 ) 2( -7 )

n1,2 = -55 ± 3025 -1176 -14

n1,2 = -55 ± 1849 -14

n1 = -55 + 1849 -14 = -55 +43 -14 = -12 -14 = 6 7 ≈ 0.86

n2 = -55 - 1849 -14 = -55 -43 -14 = -98 -14 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-7 " teilen:

-7 n 2 +55n -42 = 0 |: -7

n 2 - 55 7 n +6 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 55 14 ) 2 - 6 = 3025 196 - 6 = 3025 196 - 1176 196 = 1849 196

x1,2 = 55 14 ± 1849 196

x1 = 55 14 - 43 14 = 12 14 = 0.85714285714286

x2 = 55 14 + 43 14 = 98 14 = 7

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 7 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 2 rote und 3 blaue Kugeln. Im Behälter B sind 2 rote und 8 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 3 rote und 8 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 8 11 7 10 = 28 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 2 5 28 55 = 56 275

2. Möglichkeit: 2 rote und 9 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 9 11 8 10 = 36 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 3 5 36 55 = 108 275

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 56 275 + 108 275 = 164 275 .