Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen mit Zurücklegen
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?
Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'
Einzel-Wahrscheinlichkeiten :"Teiler": ; "nicht Teiler": ;
| Ereignis | P |
|---|---|
| Teiler -> Teiler -> Teiler | |
| Teiler -> Teiler -> nicht Teiler | |
| Teiler -> nicht Teiler -> Teiler | |
| Teiler -> nicht Teiler -> nicht Teiler | |
| nicht Teiler -> Teiler -> Teiler | |
| nicht Teiler -> Teiler -> nicht Teiler | |
| nicht Teiler -> nicht Teiler -> Teiler | |
| nicht Teiler -> nicht Teiler -> nicht Teiler |
Einzel-Wahrscheinlichkeiten: P("Teiler")=; P("nicht Teiler")=;
Die relevanten Pfade sind:- 'Teiler'-'nicht Teiler'-'nicht Teiler' (P=)
- 'nicht Teiler'-'Teiler'-'nicht Teiler' (P=)
- 'nicht Teiler'-'nicht Teiler'-'Teiler' (P=)
- 'nicht Teiler'-'nicht Teiler'-'nicht Teiler' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Kombinatorik
Beispiel:
Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 9 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.
Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 4 = 24 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 9 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 4 ⋅ 9 = 216 Möglichkeiten ergeben.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
In einem Behälter sind 8 blaue und 14 gelbe Kugeln. Es werden 7 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 22 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 7 der insgesamt 22 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 7 von 22 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 3 Kreuzchen auf 8 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 8 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 8 blauen Kugeln ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 4 Kreuzchen auf 14 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 14 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 14 gelben Kugeln ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "7 Kugeln aus 22 Kugeln ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = =
=
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Zahlenschloss hat 5 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 7 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 75 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.
Anzahl der günstigen Fälle
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 5 verschiedene Zahlen auftreten.
Es gibt
Bei jeder dieser
Insgesamt kommen wir so auf
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 9 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) =
Insgesamt sind also n + 9 Kugeln im Behälter.
Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 22 |
|
|
= |
|
|
|
|
= |
|
|
|
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die
ganze Gleichung durch "
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 3 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Kartenstapel A sind 2 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 6 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.
Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:
1. Möglichkeit: 7 Herz und 4 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz
Karte von Stapel A gezogen wurde:
P1 =
2. Möglichkeit: 6 Herz und 5 Kreuz
Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz
Karte von Stapel A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:
P = P1 + P2 =
