Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 12 rote und 4 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 5. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 16 3 15 2 14 1 13 12 12
= 1 2 1 5 1 7 1 13 1 2
= 1 1820

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 3 vom Typ rot und 7 vom Typ blau. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 27 1000
rot -> rot -> blau 63 1000
rot -> blau -> rot 63 1000
rot -> blau -> blau 147 1000
blau -> rot -> rot 63 1000
blau -> rot -> blau 147 1000
blau -> blau -> rot 147 1000
blau -> blau -> blau 343 1000

Einzel-Wahrscheinlichkeiten: P("rot")= 3 10 ; P("blau")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot'-'rot' (P= 27 1000 )
  • 'blau'-'blau'-'blau' (P= 343 1000 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 1000 + 343 1000 = 37 100


Kombinatorik

Beispiel:

Kristin hat die ganze Nacht durch MatheBattle gespielt und ist jetzt erste im Highscore in ihrer Klasse, die aus 21 Schülerinnen und Schülern besteht. Da überlegt sie sich, wie viele Möglichkeiten es eigentlich gibt, wie die ersten 3 Plätze belegt sein können. Berechne diese Anzahl aller Möglichkeiten?

Lösung einblenden

Für die erste Stelle ist jede(r) SchülerIn möglich. Es gibt also 21 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende SchülerIn nicht mehr möglich, es gibt also nur noch 20 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 19 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 21 ⋅ 20 ⋅ 19 = 7980 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 11 blaue, 13 gelbe und 15 grüne Kugeln. Es werden 13 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 3 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 39 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 13 der insgesamt 39 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 13 von 39 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 39 13 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 3 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "3 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also ( 11 3 ) Möglichkeiten.


Es gibt ( 13 6 ) verschiedene Möglichkeiten 6 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 6 gezogenen gelben unter den 13 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "6 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 gelben Kugeln ziehen", also ( 13 6 ) Möglichkeiten.


Es gibt ( 15 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 15 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 15 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 15 grünen Kugeln ziehen", also ( 15 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 3 ) ( 13 6 ) ( 15 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "13 Kugeln aus 39 Kugeln ziehen" ( 39 13 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 3 ) ( 13 6 ) ( 15 4 ) ( 39 13 ) 0,0476 = 4,76%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 6 gleich großen Sektoren, die mit den Zahlen von 1 bis 6 beschriftet sind, wird 8 mal gedreht. Wie groß ist die Wahrscheinlichkeit, dass bei den 8 Drehungen eine Zahl genau 3 mal erscheint und alle anderen 5 Zahlen genau einmal?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 6 Möglichkeiten gibt, die sich mit den 6 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 6⋅6⋅...⋅6 = 68 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 8 3 ) verschiedene Möglichkeiten 3 Kreuzchen auf 8 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die 3 Felder (Drehungen) gibt, auf denen die 3 gleichen Zahlen stehen.
Hierfür gibt es ( 8 3 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 6 möglich sind, gibt es somit ( 8 3 ) ⋅ 6 Möglichkeiten für die Belegung der 3 Felder (Drehungen) mit gleichen Zahlen, weil ja eben jede der 6 Zahlen theoretisch 3-fach vorkommen könnte.

Jetzt bleiben noch 5 Felder (Drehungen), die mit den anderen 5 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 5! = 5⋅4⋅3⋅2⋅1 Möglichkeiten.
(5 Möglichkeiten für das erste Feld, 4 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 8 3 ) ⋅ 6 ⋅ 5⋅4⋅3⋅2⋅1 = 40320 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 3 ) ⋅ 6 ⋅ 5⋅4⋅3⋅2⋅1 6⋅6⋅6⋅6⋅6⋅6⋅6⋅6 = 40320 1679616 0,024 = 2,4%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 9 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 1 22 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 9 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 9

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 9

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +9 · n -1 n +8 . Da diese Wahrscheinlichkeit ja 1 22 ist, gilt somit:

D=R\{ -9 ; -8 }

n ( n -1 ) ( n +9 ) ( n +8 ) = 1 22

Wir multiplizieren den Nenner ( n +9 ) ( n +8 ) weg!

n ( n -1 ) ( n +9 ) · ( n +8 ) = 1 22 |⋅( ( n +9 ) ( n +8 ) )
n ( n -1 ) ( n +9 ) · ( n +8 ) · ( n +9 ) ( n +8 ) = 1 22 · ( n +9 ) ( n +8 )
n · ( ( n -1 ) · 1 ) 1 = 1 22 ( n +9 ) ( n +8 )
n ( n -1 ) = 1 22 ( n +9 ) ( n +8 )
n · n + n · ( -1 ) = 1 22 ( n +9 ) ( n +8 )
n · n - n = 1 22 ( n +9 ) ( n +8 )
n 2 - n = 1 22 n 2 + 17 22 n + 36 11
n 2 - n = 1 22 n 2 + 17 22 n + 36 11 |⋅ 22
22( n 2 - n ) = 22( 1 22 n 2 + 17 22 n + 36 11 )
22 n 2 -22n = n 2 +17n +72 | - n 2 -17n -72
21 n 2 -39n -72 = 0 |:3

7 n 2 -13n -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +13 ± ( -13 ) 2 -4 · 7 · ( -24 ) 27

n1,2 = +13 ± 169 +672 14

n1,2 = +13 ± 841 14

n1 = 13 + 841 14 = 13 +29 14 = 42 14 = 3

n2 = 13 - 841 14 = 13 -29 14 = -16 14 = - 8 7

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "7 " teilen:

7 n 2 -13n -24 = 0 |: 7

n 2 - 13 7 n - 24 7 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 14 ) 2 - ( - 24 7 ) = 169 196 + 24 7 = 169 196 + 672 196 = 841 196

x1,2 = 13 14 ± 841 196

x1 = 13 14 - 29 14 = - 16 14 = -1.1428571428571

x2 = 13 14 + 29 14 = 42 14 = 3

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 3 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 4 Herz- und 6 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 5 Herz und 6 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 6 11 5 10 = 3 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 6 3 11 = 3 22

2. Möglichkeit: 4 Herz und 7 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 7 11 6 10 = 21 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 3 6 21 55 = 21 110

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 3 22 + 21 110 = 18 55 .