Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 24 26
= 3 9 8 26
= 4 39

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 8 rote, 4 blaue , 8 gelbe und 4 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 1 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 1 3 ; "nicht gelb": 2 3 ;

EreignisP
gelb -> gelb 7 69
gelb -> nicht gelb 16 69
nicht gelb -> gelb 16 69
nicht gelb -> nicht gelb 10 23

Einzel-Wahrscheinlichkeiten: P("gelb")= 1 3 ; P("nicht gelb")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'gelb'-'nicht gelb' (P= 16 69 )
'nicht gelb'-'gelb' (P= 16 69 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

16 69 + 16 69 = 32 69


Kombinatorik

Beispiel:

Petra hat sich ein 9-stelliges Passwort erstellt. Als sie eine Woche später das Passwort wieder braucht, erinnert sie sich nur noch, dass jede der Zahlen zwischen 1 und 9 genau einmal vorkam. Wie viele verschiedene Passwörter können es dann noch sein?

Lösung einblenden

Für die erste Stelle ist jede(r) möglich. Es gibt also 9 Möglichkeiten. Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 8 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 7 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

also 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 362880 Möglichkeiten.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Bei einer Lotterie werden aus einem Lostopf mit 40 durchnummerierten Kugeln immer 8 Gewinnerkugeln zufällig gezogen. Jeder Teilnehmer an der Lotterie tippt nun genau 8 Zahlen. Bestimme die Wahrscheinlichkeit, dass man hierbei genau 4 der 8 Kugeln zufällig richtig tippt.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 8 der insgesamt 40 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 8 von 40 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 40 8 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 8 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 8 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 richtig getippten unter den 8 Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 8 Gewinner-Kugeln ziehen", also ( 8 4 ) Möglichkeiten.

Für die Anzahl der Möglichkeiten, die 4 falsch getippten unter den 32 Nicht-Gewinner-Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 32 Nicht-Gewinner-Kugeln ziehen", also ( 32 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 8 4 ) ( 32 4 ) Möglichkeiten, weil ja jeder Fall der richtig getippten mit jedem Fall der falsch getippten kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "8 Kugeln aus 40 Kugeln ziehen" ( 40 8 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 8 4 ) ( 32 4 ) ( 40 8 ) = 2517200 76904685 0,0327 = 3,27%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Glücksrad mit 9 gleich großen Sektoren, die mit den Zahlen von 1 bis 9 beschriftet sind, wird 7 mal gedreht.Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl zweimal als Ergebnis erscheint?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Drehung) 9 Möglichkeiten gibt, die sich mit den 9 Möglichkeiten jedes anderen Feldes (Drehung) kombinieren lassen, so dass es insgesamt 9⋅9⋅...⋅9 = 97 Möglichkeiten für eine solche Serie von Glücksraddrehungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 7 verschiedene Zahlen auftreten.


Es gibt ( 9 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 9 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 7 Zahlen unter den 9 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 7 Zahlen von 9 möglichen anzukreuzen. Dies sind ( 9 7 ) Möglichkeiten verschiedene 7er-Pakete aus 9 Zahlen zu packen.

Bei jeder dieser ( 9 7 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 7! = 7⋅6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (7 Möglichkeiten für das erste Feld, 6 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 9 7 ) ⋅7! = 181440 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 9 7 ) ⋅7! 9⋅9⋅9⋅9⋅9⋅9⋅9 = 181440 4782969 0,0379 = 3,79%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 6 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 2 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 6 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 6

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 6

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +6 · n -1 n +5 . Da diese Wahrscheinlichkeit ja 2 15 ist, gilt somit:

D=R\{ -6 ; -5 }

n ( n -1 ) ( n +6 ) ( n +5 ) = 2 15

Wir multiplizieren den Nenner ( n +6 ) ( n +5 ) weg!

n ( n -1 ) ( n +6 ) · ( n +5 ) = 2 15 |⋅( ( n +6 ) ( n +5 ) )
n ( n -1 ) ( n +6 ) · ( n +5 ) · ( n +6 ) ( n +5 ) = 2 15 · ( n +6 ) ( n +5 )
n · ( ( n -1 ) · 1 ) 1 = 2 15 ( n +6 ) ( n +5 )
n ( n -1 ) = 2 15 ( n +6 ) ( n +5 )
n · n + n · ( -1 ) = 2 15 ( n +6 ) ( n +5 )
n · n - n = 2 15 ( n +6 ) ( n +5 )
n 2 - n = 2 15 n 2 + 22 15 n +4
n 2 - n = 2 15 n 2 + 22 15 n +4 |⋅ 15
15( n 2 - n ) = 15( 2 15 n 2 + 22 15 n +4 )
15 n 2 -15n = 2 n 2 +22n +60 | -2 n 2 -22n -60

13 n 2 -37n -60 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +37 ± ( -37 ) 2 -4 · 13 · ( -60 ) 213

n1,2 = +37 ± 1369 +3120 26

n1,2 = +37 ± 4489 26

n1 = 37 + 4489 26 = 37 +67 26 = 104 26 = 4

n2 = 37 - 4489 26 = 37 -67 26 = -30 26 = - 15 13

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "13 " teilen:

13 n 2 -37n -60 = 0 |: 13

n 2 - 37 13 n - 60 13 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 37 26 ) 2 - ( - 60 13 ) = 1369 676 + 60 13 = 1369 676 + 3120 676 = 4489 676

x1,2 = 37 26 ± 4489 676

x1 = 37 26 - 67 26 = - 30 26 = -1.1538461538462

x2 = 37 26 + 67 26 = 104 26 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 2 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 2 Herz- und 8 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 3 Herz und 8 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 5 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 8 11 7 10 = 28 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 2 5 28 55 = 56 275

2. Möglichkeit: 2 Herz und 9 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 5 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 9 11 8 10 = 36 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 3 5 36 55 = 108 275

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 56 275 + 108 275 = 164 275 .