Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 6 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 4. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 9 2 8 1 7 6 6
= 1 3 1 4 1 7 1
= 1 84

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 6 rote, 10 gelbe, 4 blaue und 4 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal schwarz"?

Lösung einblenden

Da ja ausschließlich nach 'schwarz' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'schwarz' und 'nicht schwarz'

Einzel-Wahrscheinlichkeiten :"schwarz": 1 6 ; "nicht schwarz": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal schwarz' alle Möglichkeiten enthalten, außer eben kein 'schwarz' bzw. 0 mal 'schwarz'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'schwarz')=1- 25 36 = 11 36

EreignisP
schwarz -> schwarz 1 36
schwarz -> nicht schwarz 5 36
nicht schwarz -> schwarz 5 36
nicht schwarz -> nicht schwarz 25 36

Einzel-Wahrscheinlichkeiten: P("schwarz")= 1 6 ; P("nicht schwarz")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'schwarz'-'nicht schwarz' (P= 5 36 )
  • 'nicht schwarz'-'schwarz' (P= 5 36 )
  • 'schwarz'-'schwarz' (P= 1 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 1 36 = 11 36


Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 4 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 8 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 4 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 4 = 24 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 8 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 4 ⋅ 8 = 192 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 11 blaue und 16 gelbe Kugeln. Es werden 8 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 4 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 27 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 8 der insgesamt 27 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 8 von 27 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 27 8 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also ( 11 4 ) Möglichkeiten.


Es gibt ( 16 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 16 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen gelben unter den 16 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 16 gelben Kugeln ziehen", also ( 16 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 4 ) ( 16 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "8 Kugeln aus 27 Kugeln ziehen" ( 27 8 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 4 ) ( 16 4 ) ( 27 8 ) = 600600 2220075 0,2705 = 27,05%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 5 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 4 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass darin alle 4 Zahlen enthalten sind?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 4 Möglichkeiten gibt, die sich mit den 4 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 4⋅4⋅...⋅4 = 45 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle


Es gibt ( 5 2 ) verschiedene Möglichkeiten 2 Kreuzchen auf 5 Kästchen zu verteilen.
Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten überlegen wir uns am besten zuerst, wie viele Möglichkeiten es für die beiden Felder (Zahlenschlossräder) gibt, auf denen zwei gleiche Zahlen stehen. (Da jede Zahl mindestens einmal vorkommt, und es aber mehr Zahlenschlossräder als Zahlen gibt, muss ja eine Zahl bei zwei Zahlenschlossräder stehen).
Hierfür gibt es ( 5 2 ) Möglichkeiten.

Da ja nur Zahlen zwischen 1 und 4 möglich sind, gibt es somit ( 5 2 ) ⋅ 4 Möglichkeiten für die Belegung der beiden Felder mit gleichen Zahlen, weil ja eben jede der 4 Zahlen theoretisch doppelt vorkommen könnte.

Jetzt bleiben noch 3 Felder (Zahlenschlossräder), die mit den anderen 3 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 3! = 3⋅2⋅1 Möglichkeiten.
(3 Möglichkeiten für das erste Feld, 2 Möglichkeiten für das zweite ...)

Insgesamt erhalten wir somit ( 5 2 ) ⋅ 4 ⋅ 3⋅2⋅1 = 240 günstige Möglichkeiten

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 5 2 ) ⋅ 4 ⋅ 3⋅2⋅1 4⋅4⋅4⋅4⋅4 = 240 1024 0,2344 = 23,44%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 3 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 7 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 3 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 3

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 3

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +3 · n -1 n +2 . Da diese Wahrscheinlichkeit ja 7 15 ist, gilt somit:

D=R\{ -3 ; -2 }

n ( n -1 ) ( n +3 ) ( n +2 ) = 7 15

Wir multiplizieren den Nenner ( n +3 ) ( n +2 ) weg!

n ( n -1 ) ( n +3 ) · ( n +2 ) = 7 15 |⋅( ( n +3 ) ( n +2 ) )
n ( n -1 ) ( n +3 ) · ( n +2 ) · ( n +3 ) ( n +2 ) = 7 15 · ( n +3 ) ( n +2 )
n · ( ( n -1 ) · 1 ) 1 = 7 15 ( n +3 ) ( n +2 )
n ( n -1 ) = 7 15 ( n +3 ) ( n +2 )
n · n + n · ( -1 ) = 7 15 ( n +3 ) ( n +2 )
n · n - n = 7 15 ( n +3 ) ( n +2 )
n 2 - n = 7 15 n 2 + 7 3 n + 14 5
n 2 - n = 7 15 n 2 + 7 3 n + 14 5 |⋅ 15
15( n 2 - n ) = 15( 7 15 n 2 + 7 3 n + 14 5 )
15 n 2 -15n = 7 n 2 +35n +42 | -7 n 2 -35n -42
8 n 2 -50n -42 = 0 |:2

4 n 2 -25n -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +25 ± ( -25 ) 2 -4 · 4 · ( -21 ) 24

n1,2 = +25 ± 625 +336 8

n1,2 = +25 ± 961 8

n1 = 25 + 961 8 = 25 +31 8 = 56 8 = 7

n2 = 25 - 961 8 = 25 -31 8 = -6 8 = -0,75

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 n 2 -25n -21 = 0 |: 4

n 2 - 25 4 n - 21 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 25 8 ) 2 - ( - 21 4 ) = 625 64 + 21 4 = 625 64 + 336 64 = 961 64

x1,2 = 25 8 ± 961 64

x1 = 25 8 - 31 8 = - 6 8 = -0.75

x2 = 25 8 + 31 8 = 56 8 = 7

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 7 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Behälter A sind 2 rote und 2 blaue Kugeln. Im Behälter B sind 10 rote und 5 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:

1. Möglichkeit: 11 rote und 5 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) = 5 16 4 15 = 1 12

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote Kugel von Behälter A gezogen wurde:
P1 = 2 4 1 12 = 1 24

2. Möglichkeit: 10 rote und 6 blaue

Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) = 6 16 5 15 = 1 8

Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue Kugel von Behälter A gezogen wurde:
P2 = 2 4 1 8 = 1 16

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:

P = P1 + P2 = 1 24 + 1 16 = 5 48 .