Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 24 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 27 2 26 24 25
= 3 9 2 13 4 25
= 8 975

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind 2 rote, 10 blaue , 7 gelbe und 5 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal gelb"?

Lösung einblenden

Da ja ausschließlich nach 'gelb' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'gelb' und 'nicht gelb'

Einzel-Wahrscheinlichkeiten :"gelb": 7 24 ; "nicht gelb": 17 24 ;

EreignisP
gelb -> gelb 7 92
gelb -> nicht gelb 119 552
nicht gelb -> gelb 119 552
nicht gelb -> nicht gelb 34 69

Einzel-Wahrscheinlichkeiten: P("gelb")= 7 24 ; P("nicht gelb")= 17 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'gelb'-'gelb' (P= 7 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 92 = 7 92


Kombinatorik

Beispiel:

In einer Schule gibt es 3 achte Klassen. Für ein Projekt wird aus jeder Klasse je 1 Schüler ausgelost. Wie viele verschiedene Möglichkeiten für solche Trios sind möglich, wenn in der 8a 21 Schüler, in der 8b 24 Schüler und in der in der 8c 27 Schüler hat.

Lösung einblenden

Für die Kategorie '8a' gibt es 21 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 24 Möglichkeiten der Kategorie '8b' kombinieren. Dies ergibt also 21 ⋅ 24 = 504 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 27 Möglichkeiten der Kategorie '8c' kombinieren, so dass sich insgesamt 21 ⋅ 24 ⋅ 27 = 13608 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

In einem Behälter sind 11 blaue, 10 gelbe und 13 grüne Kugeln. Es werden 16 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Kugeln blau und genau 4 Kugeln grün sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 34 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 16 der insgesamt 34 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 16 von 34 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 34 16 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also ( 11 5 ) Möglichkeiten.


Es gibt ( 10 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen gelben unter den 10 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 10 gelben Kugeln ziehen", also ( 10 7 ) Möglichkeiten.


Es gibt ( 13 4 ) verschiedene Möglichkeiten 4 Kreuzchen auf 13 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 4 gezogenen grünen unter den 13 grünen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 13 grünen Kugeln ziehen", also ( 13 4 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 5 ) ( 10 7 ) ( 13 4 ) Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben uns mit jedem Fall der gezogenen grünen kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "16 Kugeln aus 34 Kugeln ziehen" ( 34 16 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 5 ) ( 10 7 ) ( 13 4 ) ( 34 16 ) 0,018 = 1,8%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 5 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 10 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 10 Möglichkeiten gibt, die sich mit den 10 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 10⋅10⋅...⋅10 = 105 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 5 verschiedene Zahlen auftreten.


Es gibt ( 10 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 10 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 5 Zahlen unter den 10 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 5 Zahlen von 10 möglichen anzukreuzen. Dies sind ( 10 5 ) Möglichkeiten verschiedene 5er-Pakete aus 10 Zahlen zu packen.

Bei jeder dieser ( 10 5 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 5! = 5⋅4⋅3⋅2⋅1 Möglichkeiten. (5 Möglichkeiten für das erste Feld, 4 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 10 5 ) ⋅5! = 30240 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 10 5 ) ⋅5! 10⋅10⋅10⋅10⋅10 = 30240 100000 0,3024 = 30,24%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 6 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen, P(r-r) = 1 3 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 6 Kugeln im Behälter.

Die Wahrscheinlichkeit für "rot" beim ersten Versuch ist damit: 6 n + 6

Wenn dann auch tatsächlich "rot" aufgetreten ist, ist die Wahrscheinlichkeit für "rot" beim zweiten Versuch ist dann: 5 n + 5

Die Wahrscheinlichkeit, zwei rote Kugeln zu ziehen ist also 6 n +6 · 5 n +5 . Da diese Wahrscheinlichkeit ja 1 3 ist, gilt somit:

D=R\{ -6 ; -5 }

30 ( n +6 ) ( n +5 ) = 1 3

Wir multiplizieren den Nenner ( n +6 ) · ( n +5 ) weg!

30 ( n +6 ) · ( n +5 ) = 1 3 |⋅( ( n +6 ) · ( n +5 ) )
30 ( n +6 ) · ( n +5 ) · ( n +6 ) · ( n +5 ) = 1 3 · ( n +6 ) · ( n +5 )
30 n +6 n +6 = 1 3 ( n +6 ) ( n +5 )
30 = 1 3 ( n +6 ) ( n +5 )
30 = 1 3 n 2 + 11 3 n +10
30 = 1 3 n 2 + 11 3 n +10 |⋅ 3
90 = 3( 1 3 n 2 + 11 3 n +10 )
90 = n 2 +11n +30 | - n 2 -11n -30

- n 2 -11n +60 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +11 ± ( -11 ) 2 -4 · ( -1 ) · 60 2( -1 )

n1,2 = +11 ± 121 +240 -2

n1,2 = +11 ± 361 -2

n1 = 11 + 361 -2 = 11 +19 -2 = 30 -2 = -15

n2 = 11 - 361 -2 = 11 -19 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- n 2 -11n +60 = 0 |: -1

n 2 +11n -60 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 11 2 ) 2 - ( -60 ) = 121 4 + 60 = 121 4 + 240 4 = 361 4

x1,2 = - 11 2 ± 361 4

x1 = - 11 2 - 19 2 = - 30 2 = -15

x2 = - 11 2 + 19 2 = 8 2 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 3 Herz-Karten und 3 Kreuz-Karten. Im Kartenstapel B sind 6 Herz- und 4 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 7 Herz und 4 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 4 11 3 10 = 6 55

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 3 6 6 55 = 3 55

2. Möglichkeit: 6 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 3 6 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 5 11 4 10 = 2 11

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 3 6 2 11 = 1 11

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 3 55 + 1 11 = 8 55 .