Aufgabenbeispiele von Pfadregel, Kombinatorik
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ziehen bis erstmals x kommt
Beispiel:
Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 3.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅
= ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 4 vom Typ Kreuz, 5 vom Typ Herz, 6 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("Herz")=; P("Pik")=; P("Karo")=;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Kombinatorik
Beispiel:
Die Sportlehrerin Frau Hertz braucht für eine Demonstration 4 Schülerinnen. Diese möchte sie zufällig aus der 18-köpfigen Sportgruppe losen. Wie viele verschiedene 4er-Gruppen sind so möglich?
Für die erste Stelle ist jede(r/s) Schülerin möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist der/die/das an erster Stelle stehende Schülerin nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 16 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:
Es gibt also 18 ⋅ 17 ⋅ 16 ⋅ 15 = 73440 Möglichkeiten, die 18 Möglichkeiten (Schülerin) auf die 4 "Ziehungen" (geloste) zu verteilen.
Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen wurde. Also wären zum Beispiel Anton-Berta-Caesar und Berta-Caesar-Anton zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welche Stelle.
Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.
- Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
- Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
- Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.
Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.
Wir müssen deswegen die 73440 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.
Hieraus ergeben sich = 3060 Möglichkeiten für 4er-Gruppen, die aus 18 Elementen (Schülerin) gebildet werden.
n Richtige tippen (ohne Zurücklegen)
Beispiel:
In einem Behälter sind 11 blaue und 10 gelbe Kugeln. Es werden 12 Kugeln aus dem Behälter zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass davon genau 4 Kugeln blau sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Kugeln mit den Zahlen 1 bis 21 durchnummeriert wären.
Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 12 der insgesamt 21 Kugeln gewählt werden. Da dies ja der klassische Fall ist, bei dem man 12 von 21 Kugeln ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten verwenden.
Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:
Es gibt verschiedene Möglichkeiten 4 Kreuzchen auf 11 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 4 gezogenen blauen unter den 11 blauen Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "4 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 11 blauen Kugeln ziehen", also Möglichkeiten.
Es gibt verschiedene Möglichkeiten 8 Kreuzchen auf 10 Kästchen zu verteilen.
Für die Anzahl der Möglichkeiten, die 8 gezogenen gelben unter den 10 gelben Kugeln auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Kugeln ohne Berücksichtigung der Reihenfolge unter den 10 gelben Kugeln ziehen", also Möglichkeiten.
Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ⋅ Möglichkeiten, weil ja jeder Fall der gezogenen blauen mit jedem Fall der gezogenen gelben kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "12 Kugeln aus 21 Kugeln ziehen" ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P = =
=
nur verschiedene (mit Zurücklegen)
Beispiel:
Ein Zahlenschloss hat 8 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 7 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass darin alle 7 Zahlen enthalten sind?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)
Anzahl der möglichen Fälle
Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 7 Möglichkeiten gibt, die sich mit den 7 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 7⋅7⋅...⋅7 = 78 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.
Anzahl der günstigen Fälle
Es gibt
Hierfür gibt es
Da ja nur Zahlen zwischen 1 und 7 möglich sind, gibt es somit
Jetzt bleiben noch 6 Felder (Zahlenschlossräder), die mit den anderen 6 Zahlen belegt werden können, wobei dabei jede Zahl genau einmal vorkommen
muss. Auch das ist ja ein bekanntes Modell (n Zahlen auf n Felder verteilen): Hier gibt es 6! = 6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten.
(6 Möglichkeiten für das erste Feld, 5 Möglichkeiten für das zweite ...)
Insgesamt erhalten wir somit
Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:
P =
Ohne Zurücklegen rückwärts
Beispiel:
In einem Behälter sind 9 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) =
Insgesamt sind also n + 9 Kugeln im Behälter.
Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit:
Wenn dann auch tatsächlich
"blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann:
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also
D=R\{
|
|
= |
|
Wir multiplizieren den Nenner
|
|
= |
|
|⋅(
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
= |
|
|⋅ 22 |
|
|
= |
|
|
|
|
= |
|
|
|
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 =
n1,2 =
n1,2 =
n1,2 =
n1 =
n2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die
ganze Gleichung durch "
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
(Alle Lösungen sind auch in der Definitionsmenge).
Es waren also 3 blaue Kugeln im Behälter.
2 Urnen
Beispiel:
In einem Behälter A sind 3 rote und 2 blaue Kugeln. Im Behälter B sind 5 rote und 5 blaue Kugeln. Es wird eine Kugel zufällig aus Behälter A gezogen und in den Behälter B gelegt. Dann werden zwei Kugeln gleichzeitg aus Behälter B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden Kugeln aus Behälter B beide blau sind.
Es gibt zwei Möglichkeiten, wie Behälter B nach der ersten Ziehung aus Behälter A bestückt ist:
1. Möglichkeit: 6 rote und 5 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine rote Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, bestimmen:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine rote
Kugel von Behälter A gezogen wurde:
P1 =
2. Möglichkeit: 5 rote und 6 blaue
Diese Möglichkeit tritt ein, wenn aus Behälter A eine blaue Kugel gezogen wird.
Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist
Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, ist in diesem Fall dann:
P(blau-blau) =
Insgesamt gilt also für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen wenn zuvor eine blaue
Kugel von Behälter A gezogen wurde:
P2 =
Beide Möglichkeiten zusammen:
Insgesamt gilt somit für die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen:
P = P1 + P2 =
