Aufgabenbeispiele von Pfadregel, Kombinatorik

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 12 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 2.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 16 12 15
= 4 4 3 15
= 1 5

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Teiler')=1- 1 9 = 8 9

EreignisP
Teiler -> Teiler 4 9
Teiler -> nicht Teiler 2 9
nicht Teiler -> Teiler 2 9
nicht Teiler -> nicht Teiler 1 9

Einzel-Wahrscheinlichkeiten: P("Teiler")= 2 3 ; P("nicht Teiler")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'nicht Teiler' (P= 2 9 )
  • 'nicht Teiler'-'Teiler' (P= 2 9 )
  • 'Teiler'-'Teiler' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9


Kombinatorik

Beispiel:

Ein Vater möchte seinen 3 Kindern Schokolade mitbringen. Für Markus sucht er dessen Lieblingssorte Vollmilch. Davon findet er im Supermarkt 6 verschiedene Marken. Für Torsten möchte er Nußschokolade kaufen. Dafür muss er sich zwischen 7 Marken entscheiden. Maries Lieblingssorte "weiße Schokolade" hat der Supermarkt von 6 Marken. Wie viele Möglichkeiten gibt es insgesamt wie der Papa seine 3 Schokoladentafeln zusammenstellen kann.

Lösung einblenden

Für die Kategorie 'Vollmilch' gibt es 6 Möglichkeiten. Dabei kann man jedes Stück mit jeder der 7 Möglichkeiten der Kategorie 'Nuss' kombinieren. Dies ergibt also 6 ⋅ 7 = 42 Möglichkeiten. Und jede dieser Möglichkeiten kann man dann wieder mit den 6 Möglichkeiten der Kategorie 'weiß' kombinieren, so dass sich insgesamt 6 ⋅ 7 ⋅ 6 = 252 Möglichkeiten ergeben.

n Richtige tippen (ohne Zurücklegen)

Beispiel:

Oma Hilde hat 11 Nougat-, 10 Krokant- und 12 Vollmilch-Ostereier in ein großes Osternest gepackt. Als eines ihrer Enkelkinder kommt, greift sie in das Nest und holt 20 Eier raus. Bestimme die Wahrscheinlichkeit, dass davon genau 5 Nougateier und genau 8 Vollmilcheier sind.
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Zum besseren Verständnis könnnen wir uns ja vorstellen, dass alle Ostereier mit den Zahlen 1 bis 33 durchnummeriert wären.

Zuerst überlegen wir uns die Anzahl der Möglichkeiten welche 20 der insgesamt 33 Ostereier gewählt werden. Da dies ja der klassische Fall ist, bei dem man 20 von 33 Ostereier ohne Zurücklegen und ohne Berücksichtigung der Reihenfolge auswählt, können wir hierfür einfach den Binomialkoeffizienten ( 33 20 ) verwenden.

Jetzt überlegen wir uns, wie viele günstige Möglichkeiten es gibt:


Es gibt ( 11 5 ) verschiedene Möglichkeiten 5 Kreuzchen auf 11 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 5 gezogenen Nougateier unter den 11 Nougateier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "5 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 11 Nougateier ziehen", also ( 11 5 ) Möglichkeiten.


Es gibt ( 10 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 10 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 7 gezogenen Krokanteier unter den 10 Krokanteier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "7 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 10 Krokanteier ziehen", also ( 10 7 ) Möglichkeiten.


Es gibt ( 12 8 ) verschiedene Möglichkeiten 8 Kreuzchen auf 12 Kästchen zu verteilen.

Für die Anzahl der Möglichkeiten, die 8 gezogenen Vollmilcheier unter den 12 Vollmilcheier auszuwählen, können wir wieder das gleiche Modell verwenden, eben "8 verschiedene Ostereier ohne Berücksichtigung der Reihenfolge unter den 12 Vollmilcheier ziehen", also ( 12 8 ) Möglichkeiten.

Wenn wir jetzt die günstigen Fälle betrachten, kommen wir auf ( 11 5 ) ( 10 7 ) ( 12 8 ) Möglichkeiten, weil ja jeder Fall der gezogenen Nougateier mit jedem Fall der gezogenen Krokanteier uns mit jedem Fall der gezogenen Vollmilcheier kombiniert werden kann. Da ja die Anzahl der insgesamt möglichen Fälle für "20 Ostereier aus 33 Ostereier ziehen" ( 33 20 ) ist, können wir nun die Wahrscheinlichkiet als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 5 ) ( 10 7 ) ( 12 8 ) ( 33 20 ) 0,0479 = 4,79%

nur verschiedene (mit Zurücklegen)

Beispiel:

Ein Zahlenschloss hat 7 Drehscheiben, auf denen jeweils die Zahlen von 1 bis 11 einstellbar sind. Es wird mit verbundenen Augen eine zufällige Zahlen-Kombination eingestellt. Wie groß ist die Wahrscheinlichkeit, dass dabei keine Zahl mehrfach vorkommt?
(Bitte auf 4 Stellen nach dem Komma runden - keine Prozentzahl)

Lösung einblenden

Anzahl der möglichen Fälle

Man erkennt schnell, dass es für jedes Feld (hier: Zahlenschlossrad) 11 Möglichkeiten gibt, die sich mit den 11 Möglichkeiten jedes anderen Feldes (Zahlenschlossrad) kombinieren lassen, so dass es insgesamt 11⋅11⋅...⋅11 = 117 Möglichkeiten für eine Zahlenschlosseinstellungen gibt.

Anzahl der günstigen Fälle

Für die Anzahl der günstigen (oder gesuchten) Möglichkeiten suchen wir also alle möglichen Kombinationen, bei denen 7 verschiedene Zahlen auftreten.


Es gibt ( 11 7 ) verschiedene Möglichkeiten 7 Kreuzchen auf 11 Kästchen zu verteilen.
Dazu betrachten wir erstmal die Anzahl der Möglichkeiten welche 7 Zahlen unter den 11 möglichen Zahlen vorkommen können. Auch dies kann man mit dem Modell bestimmen, wie viele Möglichkeiten es gibt, 7 Zahlen von 11 möglichen anzukreuzen. Dies sind ( 11 7 ) Möglichkeiten verschiedene 7er-Pakete aus 11 Zahlen zu packen.

Bei jeder dieser ( 11 7 ) Möglichkeiten kann dabei die Reihenfolge noch beliebig verändert werden. Hierfür gibt es 7! = 7⋅6⋅5⋅4⋅3⋅2⋅1 Möglichkeiten. (7 Möglichkeiten für das erste Feld, 6 Möglichkeiten für das zweite ...)

Insgesamt kommen wir so auf ( 11 7 ) ⋅7! = 1663200 Möglichkeiten.

Die gesuchte Wahrscheinlichkeit können wir somit als Quotient der günstigen Fälle durch alle möglichen Fälle berechnen:

P = Anzahl der günstigen Fälle Anzahl aller möglichen Fälle = ( 11 7 ) ⋅7! 11⋅11⋅11⋅11⋅11⋅11⋅11 = 1663200 19487171 0,0853 = 8,53%

Ohne Zurücklegen rückwärts

Beispiel:

In einem Behälter sind 6 rote und ein unbekannte Zahl n blaue Kugeln. Es wird 2 mal ohne zurücklegen eine Kugel gezogen. Dabei beträgt die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen, P(b-b) = 2 15 . Bestimme die Anzahl der blauen Kugeln.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Insgesamt sind also n + 6 Kugeln im Behälter.

Die Wahrscheinlichkeit für "blau" beim ersten Versuch ist damit: n n + 6

Wenn dann auch tatsächlich "blau" aufgetreten ist, ist die Wahrscheinlichkeit für "blau" beim zweiten Versuch ist dann: n-1 n - 1 + 6

Die Wahrscheinlichkeit, zwei blaue Kugeln zu ziehen ist also n n +6 · n -1 n +5 . Da diese Wahrscheinlichkeit ja 2 15 ist, gilt somit:

D=R\{ -6 ; -5 }

n ( n -1 ) ( n +6 ) ( n +5 ) = 2 15

Wir multiplizieren den Nenner ( n +6 ) ( n +5 ) weg!

n ( n -1 ) ( n +6 ) · ( n +5 ) = 2 15 |⋅( ( n +6 ) ( n +5 ) )
n ( n -1 ) ( n +6 ) · ( n +5 ) · ( n +6 ) ( n +5 ) = 2 15 · ( n +6 ) ( n +5 )
n · ( ( n -1 ) · 1 ) 1 = 2 15 ( n +6 ) ( n +5 )
n ( n -1 ) = 2 15 ( n +6 ) ( n +5 )
n · n + n · ( -1 ) = 2 15 ( n +6 ) ( n +5 )
n · n - n = 2 15 ( n +6 ) ( n +5 )
n 2 - n = 2 15 n 2 + 22 15 n +4
n 2 - n = 2 15 n 2 + 22 15 n +4 |⋅ 15
15( n 2 - n ) = 15( 2 15 n 2 + 22 15 n +4 )
15 n 2 -15n = 2 n 2 +22n +60 | -2 n 2 -22n -60

13 n 2 -37n -60 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

n1,2 = +37 ± ( -37 ) 2 -4 · 13 · ( -60 ) 213

n1,2 = +37 ± 1369 +3120 26

n1,2 = +37 ± 4489 26

n1 = 37 + 4489 26 = 37 +67 26 = 104 26 = 4

n2 = 37 - 4489 26 = 37 -67 26 = -30 26 = - 15 13

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "13 " teilen:

13 n 2 -37n -60 = 0 |: 13

n 2 - 37 13 n - 60 13 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 37 26 ) 2 - ( - 60 13 ) = 1369 676 + 60 13 = 1369 676 + 3120 676 = 4489 676

x1,2 = 37 26 ± 4489 676

x1 = 37 26 - 67 26 = - 30 26 = -1.1538461538462

x2 = 37 26 + 67 26 = 104 26 = 4

(Alle Lösungen sind auch in der Definitionsmenge).

Es waren also 4 blaue Kugeln im Behälter.

2 Urnen

Beispiel:

In einem Kartenstapel A sind 2 Herz-Karten und 2 Kreuz-Karten. Im Kartenstapel B sind 10 Herz- und 5 Kreuz-Karten. Es wird eine Karte zufällig aus dem Stapel A gezogen und auf den Stapel B gelegt. Nach längerem Mischen werden dann die obersten beiden Karten vom Stapel B gezogen. Bestimme die Wahrscheinlichkeit, dass diese beiden aus dem Stapel B gezogenen Karten Kreuz-Karten sind.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Es gibt zwei Möglichkeiten, wie Stapel B nach der ersten Ziehung aus Stapel A bestückt ist:

1. Möglichkeit: 11 Herz und 5 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Herz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, können wir über ein Baumdiagramm die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, bestimmen:
P(Kreuz-Kreuz) = 5 16 4 15 = 1 12

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Herz Karte von Stapel A gezogen wurde:
P1 = 2 4 1 12 = 1 24

2. Möglichkeit: 10 Herz und 6 Kreuz

Diese Möglichkeit tritt ein, wenn aus Stapel A eine Kreuz Karte gezogen wird.

Die Wahrscheinlichkeit, dass dieser Fall überhaupt eintritt, ist 2 4 .

Wenn dann dieser Fall eingetreten ist, verändern sich am Baumdiagramm eben die Wahrscheinlichkeiten.
Die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen, ist in diesem Fall dann:
P(Kreuz-Kreuz) = 6 16 5 15 = 1 8

Insgesamt gilt also für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen wenn zuvor eine Kreuz Karte von Stapel A gezogen wurde:
P2 = 2 4 1 8 = 1 16

Beide Möglichkeiten zusammen:

Insgesamt gilt somit für die Wahrscheinlichkeit, zwei Kreuz-Karten zu ziehen:

P = P1 + P2 = 1 24 + 1 16 = 5 48 .