Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 12 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 12

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 12 = 1 : 12 ≈ 0.083

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.083 = 8.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 24 Kugeln, die mit Zahlen 1 bis 24 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 17 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 24, die größer als 17 sind, suchern, finden wir:
{18, 19, 20, 21, 22, 23, 24}, also insgesamt 7 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(größer als 17) = 7 24

Als Dezimalzahl ergibt das: P(größer als 17) = 7 24 = 7 : 24 ≈ 0.292

Als Prozentzahl ergibt das: P(größer als 17) ≈ 0.292 = 29.2%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 1 blaue, 8 grüne, 8 gelbe und 3 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 8 + 8 + 3=20

Hieraus ergibt sich für ...

blau: p= 1 20

grün: p= 8 20 = 2 5

gelb: p= 8 20 = 2 5

rot: p= 3 20

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine 6 zu würfeln?

Lösung einblenden
EreignisP
6er -> 6er 1 36
6er -> keine_6 5 36
keine_6 -> 6er 5 36
keine_6 -> keine_6 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("keine_6")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'keine_6' (P= 5 36 )
  • 'keine_6'-'6er' (P= 5 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 = 5 18


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 4 ist?

Lösung einblenden
EreignisP
1 -> 1 1 16
1 -> 2 1 16
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 16
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 16
3 -> 1 1 16
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 16
4 -> 1 1 16
4 -> 2 1 16
4 -> 3 1 16
4 -> 4 1 16

Einzel-Wahrscheinlichkeiten: P("1")= 1 4 ; P("2")= 1 4 ; P("3")= 1 4 ; P("4")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'3' (P= 1 16 )
  • '3'-'1' (P= 1 16 )
  • '2'-'2' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 + 1 16 + 1 16 = 3 16


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 4 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 6 Schüler mit Musik-Profil und 6 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 0 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 1 5 ; "nicht NWT": 4 5 ;

EreignisP
NWT -> NWT 3 95
NWT -> nicht NWT 16 95
nicht NWT -> NWT 16 95
nicht NWT -> nicht NWT 12 19

Einzel-Wahrscheinlichkeiten: P("NWT")= 1 5 ; P("nicht NWT")= 4 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'nicht NWT'-'nicht NWT' (P= 12 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 19 = 12 19


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 2 vom Typ Kreuz, 8 vom Typ Herz, 9 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 276
Kreuz -> Herz 2 69
Kreuz -> Pik 3 92
Kreuz -> Karo 5 276
Herz -> Kreuz 2 69
Herz -> Herz 7 69
Herz -> Pik 3 23
Herz -> Karo 5 69
Pik -> Kreuz 3 92
Pik -> Herz 3 23
Pik -> Pik 3 23
Pik -> Karo 15 184
Karo -> Kreuz 5 276
Karo -> Herz 5 69
Karo -> Pik 15 184
Karo -> Karo 5 138

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 12 ; P("Herz")= 1 3 ; P("Pik")= 3 8 ; P("Karo")= 5 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 276 )
'Herz'-'Herz' (P= 7 69 )
'Pik'-'Pik' (P= 3 23 )
'Karo'-'Karo' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 276 + 7 69 + 3 23 + 5 138 = 25 92


nur Summen

Beispiel:

In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 8 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 4 15 ; "nicht 3": 11 15 ;

EreignisP
3 -> 3 2 35
3 -> nicht 3 22 105
nicht 3 -> 3 22 105
nicht 3 -> nicht 3 11 21

Einzel-Wahrscheinlichkeiten: P("3")= 4 15 ; P("nicht 3")= 11 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'3'-'3' (P= 2 35 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 35 = 2 35


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 2. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 1 3
= 1 4 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 5 vom Typ Kreuz, 3 vom Typ Herz, 7 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 19
Kreuz -> Herz 3 76
Kreuz -> Pik 7 76
Kreuz -> Karo 5 76
Herz -> Kreuz 3 76
Herz -> Herz 3 190
Herz -> Pik 21 380
Herz -> Karo 3 76
Pik -> Kreuz 7 76
Pik -> Herz 21 380
Pik -> Pik 21 190
Pik -> Karo 7 76
Karo -> Kreuz 5 76
Karo -> Herz 3 76
Karo -> Pik 7 76
Karo -> Karo 1 19

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 4 ; P("Herz")= 3 20 ; P("Pik")= 7 20 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 19 )
'Herz'-'Herz' (P= 3 190 )
'Pik'-'Pik' (P= 21 190 )
'Karo'-'Karo' (P= 1 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 19 + 3 190 + 21 190 + 1 19 = 22 95