Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 16 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 16

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 16 = 1 : 16 ≈ 0.063

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.063 = 6.3%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 2 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 2 4 = 1 2

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 2 = 1 : 2 ≈ 0.5

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.5 = 50%

Zufallsexperiment (einstufig)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Klasse bastelt für ihr Klassenfest ein Glückrad. Bestimme die Wahrscheinlichkeiten für die einzelnen Sektoren.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:

blau: Man erkennt einen Halbkreis => p= 1 2

grün: Man erkennt einen Viertelkreis => p= 1 4

gelb: Man erkennt einen Viertelkreis => p= 1 4

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 3 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Wappen'-'Wappen'-'Wappen' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 = 1 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 3 10 ; "nicht blau": 7 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal blau' alle Möglichkeiten enthalten, außer eben kein 'blau' bzw. 0 mal 'blau'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'blau')=1- 343 1000 = 657 1000

EreignisP
blau -> blau -> blau 27 1000
blau -> blau -> nicht blau 63 1000
blau -> nicht blau -> blau 63 1000
blau -> nicht blau -> nicht blau 147 1000
nicht blau -> blau -> blau 63 1000
nicht blau -> blau -> nicht blau 147 1000
nicht blau -> nicht blau -> blau 147 1000
nicht blau -> nicht blau -> nicht blau 343 1000

Einzel-Wahrscheinlichkeiten: P("blau")= 3 10 ; P("nicht blau")= 7 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'nicht blau'-'nicht blau' (P= 147 1000 )
  • 'nicht blau'-'blau'-'nicht blau' (P= 147 1000 )
  • 'nicht blau'-'nicht blau'-'blau' (P= 147 1000 )
  • 'blau'-'blau'-'nicht blau' (P= 63 1000 )
  • 'blau'-'nicht blau'-'blau' (P= 63 1000 )
  • 'nicht blau'-'blau'-'blau' (P= 63 1000 )
  • 'blau'-'blau'-'blau' (P= 27 1000 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

147 1000 + 147 1000 + 147 1000 + 63 1000 + 63 1000 + 63 1000 + 27 1000 = 657 1000


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 5 vom Typ Kreuz, 7 vom Typ Herz, 3 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 19
Kreuz -> Herz 7 76
Kreuz -> Pik 3 76
Kreuz -> Karo 5 76
Herz -> Kreuz 7 76
Herz -> Herz 21 190
Herz -> Pik 21 380
Herz -> Karo 7 76
Pik -> Kreuz 3 76
Pik -> Herz 21 380
Pik -> Pik 3 190
Pik -> Karo 3 76
Karo -> Kreuz 5 76
Karo -> Herz 7 76
Karo -> Pik 3 76
Karo -> Karo 1 19

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 4 ; P("Herz")= 7 20 ; P("Pik")= 3 20 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 19 )
'Herz'-'Herz' (P= 21 190 )
'Pik'-'Pik' (P= 3 190 )
'Karo'-'Karo' (P= 1 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 19 + 21 190 + 3 190 + 1 19 = 22 95


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 8 Karten der Farbe Kreuz, 8 der Farbe Pik, 7 der Farbe Herz und 7 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal Pik"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden

Da ja ausschließlich nach 'Pik' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Pik' und 'nicht Pik'

Einzel-Wahrscheinlichkeiten :"Pik": 4 15 ; "nicht Pik": 11 15 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Pik' alle Möglichkeiten enthalten, außer eben kein 'Pik' bzw. 0 mal 'Pik'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Pik')=1- 77 145 = 68 145

EreignisP
Pik -> Pik 28 435
Pik -> nicht Pik 88 435
nicht Pik -> Pik 88 435
nicht Pik -> nicht Pik 77 145

Einzel-Wahrscheinlichkeiten: P("Pik")= 4 15 ; P("nicht Pik")= 11 15 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Pik'-'nicht Pik' (P= 88 435 )
'nicht Pik'-'Pik' (P= 88 435 )
'Pik'-'Pik' (P= 28 435 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

88 435 + 88 435 + 28 435 = 68 145


nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 9 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 9 64
1 -> 3 3 32
2 -> 1 9 64
2 -> 2 9 64
2 -> 3 3 32
3 -> 1 3 32
3 -> 2 3 32
3 -> 3 1 16

Einzel-Wahrscheinlichkeiten: P("1")= 3 8 ; P("2")= 3 8 ; P("3")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 9 64 )
  • '2'-'1' (P= 9 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 64 + 9 64 = 9 32


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 18 20
= 3 7 6 20
= 9 70

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(