Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 4 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 4

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 4 = 1 : 4 ≈ 0.25

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.25 = 25%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung einer der markierten (orangen) Sektoren erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 5 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 4 5

Als Dezimalzahl ergibt das: P(oranger Sektor) = 4 5 = 4 : 5 ≈ 0.8

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.8 = 80%

Zufallsexperiment (einstufig)

Beispiel:

In einer Klasse besuchen 1 Schülerinnen und Schüler den römisch-katholischen Religionsunterricht, 3 den evangelischen, und 6 sind in Ethik. Wie groß ist jeweils die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler der Klasse im jeweiligen Religionsunterricht ist?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 6=10

Hieraus ergibt sich für ...

rk: p= 1 10

ev: p= 3 10

Eth: p= 6 10 = 3 5

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens 1 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 6er' alle Möglichkeiten enthalten, außer eben 2 mal '6er'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '6er')=1- 1 36 = 35 36

EreignisP
6er -> 6er 1 36
6er -> nicht 6er 5 36
nicht 6er -> 6er 5 36
nicht 6er -> nicht 6er 25 36

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("nicht 6er")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'nicht 6er' (P= 5 36 )
  • 'nicht 6er'-'6er' (P= 5 36 )
  • 'nicht 6er'-'nicht 6er' (P= 25 36 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 36 + 5 36 + 25 36 = 35 36


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '3er-Zahl' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3er-Zahl' und 'nicht 3er-Zahl'

Einzel-Wahrscheinlichkeiten :"3er-Zahl": 1 3 ; "nicht 3er-Zahl": 2 3 ;

EreignisP
3er-Zahl -> 3er-Zahl -> 3er-Zahl 1 27
3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 2 27
3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> 3er-Zahl -> 3er-Zahl 2 27
nicht 3er-Zahl -> 3er-Zahl -> nicht 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> 3er-Zahl 4 27
nicht 3er-Zahl -> nicht 3er-Zahl -> nicht 3er-Zahl 8 27

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er-Zahl")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'3er-Zahl'-'nicht 3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'nicht 3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • 'nicht 3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 2 27 )
  • '3er-Zahl'-'3er-Zahl'-'3er-Zahl' (P= 1 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 27 + 2 27 + 2 27 + 1 27 = 7 27


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 2 vom Typ Kreuz, 6 vom Typ Herz, 10 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 1 276
Kreuz -> Herz 1 46
Kreuz -> Pik 5 138
Kreuz -> Karo 1 46
Herz -> Kreuz 1 46
Herz -> Herz 5 92
Herz -> Pik 5 46
Herz -> Karo 3 46
Pik -> Kreuz 5 138
Pik -> Herz 5 46
Pik -> Pik 15 92
Pik -> Karo 5 46
Karo -> Kreuz 1 46
Karo -> Herz 3 46
Karo -> Pik 5 46
Karo -> Karo 5 92

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 1 12 ; P("Herz")= 1 4 ; P("Pik")= 5 12 ; P("Karo")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 1 276 )
'Herz'-'Herz' (P= 5 92 )
'Pik'-'Pik' (P= 15 92 )
'Karo'-'Karo' (P= 5 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 276 + 5 92 + 15 92 + 5 92 = 19 69


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 6 Karten der Farbe Kreuz, 3 der Farbe Pik, 6 der Farbe Herz und 5 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Karo"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden

Da ja ausschließlich nach 'Karo' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Karo' und 'nicht Karo'

Einzel-Wahrscheinlichkeiten :"Karo": 1 4 ; "nicht Karo": 3 4 ;

EreignisP
Karo -> Karo 1 19
Karo -> nicht Karo 15 76
nicht Karo -> Karo 15 76
nicht Karo -> nicht Karo 21 38

Einzel-Wahrscheinlichkeiten: P("Karo")= 1 4 ; P("nicht Karo")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Karo'-'Karo' (P= 1 19 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 19 = 1 19


nur Summen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 9 2er und 6 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 4 ; "nicht 3": 3 4 ;

EreignisP
3 -> 3 1 16
3 -> nicht 3 3 16
nicht 3 -> 3 3 16
nicht 3 -> nicht 3 9 16

Einzel-Wahrscheinlichkeiten: P("3")= 1 4 ; P("nicht 3")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 = 1 16


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 18 19
= 3 7 2 10 3 19
= 9 665

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

EreignisP
Teiler -> Teiler -> Teiler 8 27
Teiler -> Teiler -> nicht Teiler 4 27
Teiler -> nicht Teiler -> Teiler 4 27
Teiler -> nicht Teiler -> nicht Teiler 2 27
nicht Teiler -> Teiler -> Teiler 4 27
nicht Teiler -> Teiler -> nicht Teiler 2 27
nicht Teiler -> nicht Teiler -> Teiler 2 27
nicht Teiler -> nicht Teiler -> nicht Teiler 1 27

Einzel-Wahrscheinlichkeiten: P("Teiler")= 2 3 ; P("nicht Teiler")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'Teiler'-'nicht Teiler' (P= 4 27 )
  • 'Teiler'-'nicht Teiler'-'Teiler' (P= 4 27 )
  • 'nicht Teiler'-'Teiler'-'Teiler' (P= 4 27 )
  • 'Teiler'-'Teiler'-'Teiler' (P= 8 27 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 27 + 4 27 + 4 27 + 8 27 = 20 27