Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 32 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(eingefärbte Kiste) =
Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = = 1 : 32 ≈ 0.031
Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.031 = 3.1%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 24 Kugeln, die mit Zahlen 1 bis 24 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Primzahlen zwischen 1 und 24 suchern, finden wir:
{2, 3, 5, 7, 11, 13, 17, 19, 23}, also insgesamt
9 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(Primzahl) = =
Als Dezimalzahl ergibt das: P(Primzahl) = = 3 : 8 ≈ 0.375
Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.375 = 37.5%
Zufallsexperiment (einstufig)
Beispiel:
Wie groß sind jeweils die Wahrscheinlichkeiten beim Würfeln dass die gewürfelte Zahl genau einen, genau zwei, genau drei oder genau vier Teiler hat?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p=
Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 1 + 3 + 1 + 1=6
Hieraus ergibt sich für ...
1: p=
2: p= =
3: p=
4: p=
mit Zurücklegen (einfach)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
| Ereignis | P |
|---|---|
| rot -> rot | |
| rot -> blau | |
| blau -> rot | |
| blau -> blau |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("blau")=;
Die relevanten Pfade sind:- 'rot'-'blau' (P=)
- 'blau'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen mit Zurücklegen
Beispiel:
In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 2 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
| Ereignis | P |
|---|---|
| rot -> rot -> rot | |
| rot -> rot -> nicht rot | |
| rot -> nicht rot -> rot | |
| rot -> nicht rot -> nicht rot | |
| nicht rot -> rot -> rot | |
| nicht rot -> rot -> nicht rot | |
| nicht rot -> nicht rot -> rot | |
| nicht rot -> nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:- 'rot'-'rot'-'nicht rot' (P=)
- 'rot'-'nicht rot'-'rot' (P=)
- 'nicht rot'-'rot'-'rot' (P=)
- 'rot'-'rot'-'rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
ohne Zurücklegen (einfach)
Beispiel:
In einem Kartenstapel sind verschiedene Karten, 4 vom Typ Kreuz, 3 vom Typ Herz, 7 vom Typ Pik und 6 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)
| Ereignis | P |
|---|---|
| Kreuz -> Kreuz | |
| Kreuz -> Herz | |
| Kreuz -> Pik | |
| Kreuz -> Karo | |
| Herz -> Kreuz | |
| Herz -> Herz | |
| Herz -> Pik | |
| Herz -> Karo | |
| Pik -> Kreuz | |
| Pik -> Herz | |
| Pik -> Pik | |
| Pik -> Karo | |
| Karo -> Kreuz | |
| Karo -> Herz | |
| Karo -> Pik | |
| Karo -> Karo |
Einzel-Wahrscheinlichkeiten: P("Kreuz")=; P("Herz")=; P("Pik")=; P("Karo")=;
Die relevanten Pfade sind:
'Kreuz'-'Kreuz' (P=)
'Herz'-'Herz' (P=)
'Pik'-'Pik' (P=)
'Karo'-'Karo' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Lostopf sind 3 Kugeln mit einer Eins beschriftet, 10 Kugeln mit einer Zwei, 4 mit Drei und 3 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 7 ergeben?
| Ereignis | P |
|---|---|
| 1 -> 1 | |
| 1 -> 2 | |
| 1 -> 3 | |
| 1 -> 4 | |
| 2 -> 1 | |
| 2 -> 2 | |
| 2 -> 3 | |
| 2 -> 4 | |
| 3 -> 1 | |
| 3 -> 2 | |
| 3 -> 3 | |
| 3 -> 4 | |
| 4 -> 1 | |
| 4 -> 2 | |
| 4 -> 3 | |
| 4 -> 4 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=; P("4")=;
Die relevanten Pfade sind:
'3'-'4' (P=)
'4'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 18 ist?
Da ja ausschließlich nach '9' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '9' und 'nicht 9'
Einzel-Wahrscheinlichkeiten :"9": ; "nicht 9": ;
| Ereignis | P |
|---|---|
| 9 -> 9 | |
| 9 -> nicht 9 | |
| nicht 9 -> 9 | |
| nicht 9 -> nicht 9 |
Einzel-Wahrscheinlichkeiten: P("9")=; P("nicht 9")=;
Die relevanten Pfade sind:
'9'-'9' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen bis erstmals x kommt
Beispiel:
In einer Urne sind 12 rote und 3 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅
= ⋅
=
nur Summen
Beispiel:
In einer Urne sind 10 Kugeln, die mit einer 1 beschriftet sind, 6 kugel mit einer 2 und 4 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 6 ist?
Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'
Einzel-Wahrscheinlichkeiten :"3": ; "nicht 3": ;
| Ereignis | P |
|---|---|
| 3 -> 3 | |
| 3 -> nicht 3 | |
| nicht 3 -> 3 | |
| nicht 3 -> nicht 3 |
Einzel-Wahrscheinlichkeiten: P("3")=; P("nicht 3")=;
Die relevanten Pfade sind:
'3'-'3' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
