Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 24 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 24

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 24 = 1 : 24 ≈ 0.042

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.042 = 4.2%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 9 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 4 36 = 1 9

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 9 = 1 : 9 ≈ 0.111

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.111 = 11.1%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 4 blaue, 6 grüne, 10 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 4 + 6 + 10 + 4=24

Hieraus ergibt sich für ...

blau: p= 4 24 = 1 6

grün: p= 6 24 = 1 4

gelb: p= 10 24 = 5 12

rot: p= 4 24 = 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht prim'-'nicht prim'-'nicht prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 = 1 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 Kugeln, die mit einer 1 beschriftet sind, 6 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?

Lösung einblenden
EreignisP
1 -> 1 81 400
1 -> 2 27 200
1 -> 3 9 80
2 -> 1 27 200
2 -> 2 9 100
2 -> 3 3 40
3 -> 1 9 80
3 -> 2 3 40
3 -> 3 1 16

Einzel-Wahrscheinlichkeiten: P("1")= 9 20 ; P("2")= 3 10 ; P("3")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 27 200 )
  • '2'-'1' (P= 27 200 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

27 200 + 27 200 = 27 100


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 8 rote und 4 blaue Kugeln. Es wird 2 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 14 33
rot -> blau 8 33
blau -> rot 8 33
blau -> blau 1 11

Einzel-Wahrscheinlichkeiten: P("rot")= 2 3 ; P("blau")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau' (P= 1 11 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 11 = 1 11


Ziehen ohne Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 6 vom Typ rot und 4 vom Typ blau. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 3 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot -> rot 1 6
rot -> rot -> blau 1 6
rot -> blau -> rot 1 6
rot -> blau -> blau 1 10
blau -> rot -> rot 1 6
blau -> rot -> blau 1 10
blau -> blau -> rot 1 10
blau -> blau -> blau 1 30

Einzel-Wahrscheinlichkeiten: P("rot")= 3 5 ; P("blau")= 2 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'rot'-'rot'-'rot' (P= 1 6 )
'blau'-'blau'-'blau' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 6 + 1 30 = 1 5


nur Summen

Beispiel:

In einer Urne sind 8 Kugeln, die mit einer 1 beschriftet sind, 7 2er und 5 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 6 ist?

Lösung einblenden

Da ja ausschließlich nach '3' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '3' und 'nicht 3'

Einzel-Wahrscheinlichkeiten :"3": 1 4 ; "nicht 3": 3 4 ;

EreignisP
3 -> 3 1 16
3 -> nicht 3 3 16
nicht 3 -> 3 3 16
nicht 3 -> nicht 3 9 16

Einzel-Wahrscheinlichkeiten: P("3")= 1 4 ; P("nicht 3")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'3' (P= 1 16 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 16 = 1 16


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

nur Summen

Beispiel:

In einer Urne sind 7 Kugeln, die mit einer 1 beschriftet sind, 3 kugel mit einer 2 und 5 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 5
1 -> 2 1 10
1 -> 3 1 6
2 -> 1 1 10
2 -> 2 1 35
2 -> 3 1 14
3 -> 1 1 6
3 -> 2 1 14
3 -> 3 2 21

Einzel-Wahrscheinlichkeiten: P("1")= 7 15 ; P("2")= 1 5 ; P("3")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'2' (P= 1 10 )
'2'-'1' (P= 1 10 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 10 + 1 10 = 1 5