Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 29 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 29

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 29 = 1 : 29 ≈ 0.034

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.034 = 3.4%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird eine Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei eine (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 3 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 8 12 = 2 3

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 2 3 = 2 : 3 ≈ 0.667

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.667 = 66.7%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 2 Asse, 1 Könige, 1 Damen, und 6 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 2 + 1 + 1 + 6=10

Hieraus ergibt sich für ...

Ass: p= 2 10 = 1 5

König: p= 1 10

Dame: p= 1 10

Bube: p= 6 10 = 3 5

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 5 rote, 7 gelbe, 3 blaue und 5 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 1 16
rot -> blau 3 80
rot -> gelb 7 80
rot -> schwarz 1 16
blau -> rot 3 80
blau -> blau 9 400
blau -> gelb 21 400
blau -> schwarz 3 80
gelb -> rot 7 80
gelb -> blau 21 400
gelb -> gelb 49 400
gelb -> schwarz 7 80
schwarz -> rot 1 16
schwarz -> blau 3 80
schwarz -> gelb 7 80
schwarz -> schwarz 1 16

Einzel-Wahrscheinlichkeiten: P("rot")= 1 4 ; P("blau")= 3 20 ; P("gelb")= 7 20 ; P("schwarz")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 3 80 )
  • 'blau'-'rot' (P= 3 80 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 80 + 3 80 = 3 40


Ziehen mit Zurücklegen

Beispiel:

Beim Roulette kann man auch auf Zahlenbereiche setzen. Z.B. auf die Zahlenbereiche 1-12, 13-24 und 25-36, wobei die grüne 0 zu keinem der Bereiche gehört. Es wird zwei mal eine Kugel im Roulette gespielt. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal 25-36"?

Lösung einblenden

Da ja ausschließlich nach '25-36' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '25-36' und 'nicht 25-36'

Einzel-Wahrscheinlichkeiten :"25-36": 12 37 ; "nicht 25-36": 25 37 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal 25-36' alle Möglichkeiten enthalten, außer eben 2 mal '25-36'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal '25-36')=1- 144 1369 = 1225 1369

EreignisP
25-36 -> 25-36 144 1369
25-36 -> nicht 25-36 300 1369
nicht 25-36 -> 25-36 300 1369
nicht 25-36 -> nicht 25-36 625 1369

Einzel-Wahrscheinlichkeiten: P("25-36")= 12 37 ; P("nicht 25-36")= 25 37 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '25-36'-'nicht 25-36' (P= 300 1369 )
  • 'nicht 25-36'-'25-36' (P= 300 1369 )
  • 'nicht 25-36'-'nicht 25-36' (P= 625 1369 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

300 1369 + 300 1369 + 625 1369 = 1225 1369


ohne Zurücklegen (einfach)

Beispiel:

In einer Urne sind 5 rote, 6 blaue , 10 gelbe und 3 schwarze Kugeln. Es wird zwei mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal blau"?

Lösung einblenden

Da ja ausschließlich nach 'blau' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'blau' und 'nicht blau'

Einzel-Wahrscheinlichkeiten :"blau": 1 4 ; "nicht blau": 3 4 ;

EreignisP
blau -> blau 5 92
blau -> nicht blau 9 46
nicht blau -> blau 9 46
nicht blau -> nicht blau 51 92

Einzel-Wahrscheinlichkeiten: P("blau")= 1 4 ; P("nicht blau")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'blau'-'blau' (P= 5 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 92 = 5 92


Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften höchstens 2 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal deutsch' alle Möglichkeiten enthalten, außer eben 3 mal 'deutsch'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(3 mal 'deutsch')=1- 1 140 = 139 140

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("nicht deutsch")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'deutsch'-'nicht deutsch' (P= 3 70 )
'deutsch'-'nicht deutsch'-'deutsch' (P= 3 70 )
'nicht deutsch'-'deutsch'-'deutsch' (P= 3 70 )
'deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 70 + 3 70 + 3 70 + 11 70 + 11 70 + 11 70 + 11 28 = 139 140


nur Summen

Beispiel:

In einer 8. Klasse gibt es 15 SchülerInnen, die 13 Jahre alt sind, 5 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 35 92
13 -> 14 25 184
13 -> 15 5 46
14 -> 13 25 184
14 -> 14 5 138
14 -> 15 5 138
15 -> 13 5 46
15 -> 14 5 138
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: P("13")= 5 8 ; P("14")= 5 24 ; P("15")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 25 184 )
'14'-'13' (P= 25 184 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 184 + 25 184 = 25 92


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 18 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 21 2 20 1 19 18 18
= 1 7 1 10 1 19 3 3
= 1 1330

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 3 ist?

Lösung einblenden
EreignisP
1 -> 1 1 4
1 -> 2 1 8
1 -> 3 1 16
1 -> 4 1 16
2 -> 1 1 8
2 -> 2 1 16
2 -> 3 1 32
2 -> 4 1 32
3 -> 1 1 16
3 -> 2 1 32
3 -> 3 1 64
3 -> 4 1 64
4 -> 1 1 16
4 -> 2 1 32
4 -> 3 1 64
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 1 2 ; P("2")= 1 4 ; P("3")= 1 8 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '1'-'2' (P= 1 8 )
  • '2'-'1' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 = 1 4