Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 32 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 32

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 32 = 1 : 32 ≈ 0.031

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.031 = 3.1%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 12 Kugeln, die mit Zahlen 1 bis 12 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Primzahlen zwischen 1 und 12 suchern, finden wir:
{2, 3, 5, 7, 11}, also insgesamt 5 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(Primzahl) = 5 12

Als Dezimalzahl ergibt das: P(Primzahl) = 5 12 = 5 : 12 ≈ 0.417

Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.417 = 41.7%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 8 Asse, 3 Könige, 10 Damen, und 3 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 8 + 3 + 10 + 3=24

Hieraus ergibt sich für ...

Ass: p= 8 24 = 1 3

König: p= 3 24 = 1 8

Dame: p= 10 24 = 5 12

Bube: p= 3 24 = 1 8

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 1 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er 2 9
nicht 3er -> 3er-Zahl 2 9
nicht 3er -> nicht 3er 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3er-Zahl'-'nicht 3er' (P= 2 9 )
  • 'nicht 3er'-'3er-Zahl' (P= 2 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 = 4 9


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 2 rote, 5 gelbe, 8 blaue und 5 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "mindestens 1 mal rot"?

Lösung einblenden

Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'

Einzel-Wahrscheinlichkeiten :"rot": 1 10 ; "nicht rot": 9 10 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal rot' alle Möglichkeiten enthalten, außer eben kein 'rot' bzw. 0 mal 'rot'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'rot')=1- 81 100 = 19 100

EreignisP
rot -> rot 1 100
rot -> nicht rot 9 100
nicht rot -> rot 9 100
nicht rot -> nicht rot 81 100

Einzel-Wahrscheinlichkeiten: P("rot")= 1 10 ; P("nicht rot")= 9 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'nicht rot' (P= 9 100 )
  • 'nicht rot'-'rot' (P= 9 100 )
  • 'rot'-'rot' (P= 1 100 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 100 + 9 100 + 1 100 = 19 100


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind verschiedene Karten, 9 vom Typ Kreuz, 10 vom Typ Herz, 6 vom Typ Pik und 5 vom Typ Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Karten der gleichen Farbe zu ziehen? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 12 145
Kreuz -> Herz 3 29
Kreuz -> Pik 9 145
Kreuz -> Karo 3 58
Herz -> Kreuz 3 29
Herz -> Herz 3 29
Herz -> Pik 2 29
Herz -> Karo 5 87
Pik -> Kreuz 9 145
Pik -> Herz 2 29
Pik -> Pik 1 29
Pik -> Karo 1 29
Karo -> Kreuz 3 58
Karo -> Herz 5 87
Karo -> Pik 1 29
Karo -> Karo 2 87

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 3 10 ; P("Herz")= 1 3 ; P("Pik")= 1 5 ; P("Karo")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Kreuz'-'Kreuz' (P= 12 145 )
'Herz'-'Herz' (P= 3 29 )
'Pik'-'Pik' (P= 1 29 )
'Karo'-'Karo' (P= 2 87 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

12 145 + 3 29 + 1 29 + 2 87 = 106 435


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 2 Asse, 4 Könige und 2 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal König"?

Lösung einblenden

Da ja ausschließlich nach 'König' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'König' und 'nicht König'

Einzel-Wahrscheinlichkeiten :"König": 1 2 ; "nicht König": 1 2 ;

EreignisP
König -> König 3 14
König -> nicht König 2 7
nicht König -> König 2 7
nicht König -> nicht König 3 14

Einzel-Wahrscheinlichkeiten: P("König")= 1 2 ; P("nicht König")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'König'-'König' (P= 3 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 14 = 3 14


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 2 Karten vom Wert 8 und 4 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?

Lösung einblenden
EreignisP
7 -> 7 1 28
7 -> 8 1 14
7 -> 9 1 7
8 -> 7 1 14
8 -> 8 1 28
8 -> 9 1 7
9 -> 7 1 7
9 -> 8 1 7
9 -> 9 3 14

Einzel-Wahrscheinlichkeiten: P("7")= 1 4 ; P("8")= 1 4 ; P("9")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'8' (P= 1 14 )
'8'-'7' (P= 1 14 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 14 + 1 14 = 1 7


Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 3. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2
= 1 2 1 1 2
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

Werder Bremen hat mal wieder das Halbfinale des DFB-Pokals erreicht. Wie hoch ist die Wahrscheinlichkeit, dass bei der Auslosung Werder an 4. Stelle gezogen wird?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 4 2 3 1 2 1
= 1 2 1 1 2 1
= 1 4

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(