Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 10 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 10

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 10 = 1 : 10 ≈ 0.1

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.1 = 10%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 20 Kugeln, die mit Zahlen 1 bis 20 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl größer als 4 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 20, die größer als 4 sind, suchern, finden wir:
{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, also insgesamt 16 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(größer als 4) = 16 20 = 4 5

Als Dezimalzahl ergibt das: P(größer als 4) = 4 5 = 4 : 5 ≈ 0.8

Als Prozentzahl ergibt das: P(größer als 4) ≈ 0.8 = 80%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 7 blaue, 3 grüne, 6 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 3 + 6 + 4=20

Hieraus ergibt sich für ...

blau: p= 7 20

grün: p= 3 20

gelb: p= 6 20 = 3 10

rot: p= 4 20 = 1 5

mit Zurücklegen (einfach)

Beispiel:

In einer Urne sind 10 rote, 3 gelbe, 10 blaue und 7 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal blau und 1 mal schwarz"?

Lösung einblenden
EreignisP
rot -> rot 1 9
rot -> blau 1 9
rot -> gelb 1 30
rot -> schwarz 7 90
blau -> rot 1 9
blau -> blau 1 9
blau -> gelb 1 30
blau -> schwarz 7 90
gelb -> rot 1 30
gelb -> blau 1 30
gelb -> gelb 1 100
gelb -> schwarz 7 300
schwarz -> rot 7 90
schwarz -> blau 7 90
schwarz -> gelb 7 300
schwarz -> schwarz 49 900

Einzel-Wahrscheinlichkeiten: P("rot")= 1 3 ; P("blau")= 1 3 ; P("gelb")= 1 10 ; P("schwarz")= 7 30 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'blau'-'schwarz' (P= 7 90 )
  • 'schwarz'-'blau' (P= 7 90 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

7 90 + 7 90 = 7 45


Ziehen mit Zurücklegen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind Vielfache
von Achtels-Kreisen)

Ein Glücksrad wird zwei mal gedreht. Wie hoch ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen 7 ist?

Lösung einblenden
EreignisP
1 -> 1 9 64
1 -> 2 3 32
1 -> 3 3 32
1 -> 4 3 64
2 -> 1 3 32
2 -> 2 1 16
2 -> 3 1 16
2 -> 4 1 32
3 -> 1 3 32
3 -> 2 1 16
3 -> 3 1 16
3 -> 4 1 32
4 -> 1 3 64
4 -> 2 1 32
4 -> 3 1 32
4 -> 4 1 64

Einzel-Wahrscheinlichkeiten: P("1")= 3 8 ; P("2")= 1 4 ; P("3")= 1 4 ; P("4")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '3'-'4' (P= 1 32 )
  • '4'-'3' (P= 1 32 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 32 + 1 32 = 1 16


ohne Zurücklegen (einfach)

Beispiel:

In einem Kartenstapel sind 2 Asse, 2 Könige und 2 Damen. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit "genau 2 mal Ass"?

Lösung einblenden

Da ja ausschließlich nach 'Ass' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Ass' und 'nicht Ass'

Einzel-Wahrscheinlichkeiten :"Ass": 1 3 ; "nicht Ass": 2 3 ;

EreignisP
Ass -> Ass 1 15
Ass -> nicht Ass 4 15
nicht Ass -> Ass 4 15
nicht Ass -> nicht Ass 2 5

Einzel-Wahrscheinlichkeiten: P("Ass")= 1 3 ; P("nicht Ass")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Ass'-'Ass' (P= 1 15 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 15 = 1 15


Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 9 Schüler mit NWT-Profil, 10 Schüler mit sprachlichem Profil, 9 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass genau 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 9 32 ; "nicht NWT": 23 32 ;

EreignisP
NWT -> NWT 9 124
NWT -> nicht NWT 207 992
nicht NWT -> NWT 207 992
nicht NWT -> nicht NWT 253 496

Einzel-Wahrscheinlichkeiten: P("NWT")= 9 32 ; P("nicht NWT")= 23 32 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 207 992 )
'nicht NWT'-'NWT' (P= 207 992 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

207 992 + 207 992 = 207 496


nur Summen

Beispiel:

In einer Urne sind 6 Kugeln, die mit einer 1 beschriftet sind, 8 kugel mit einer 2 und 6 Kugeln mit einer 3. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der Kugeln 4 ist?

Lösung einblenden
EreignisP
1 -> 1 3 38
1 -> 2 12 95
1 -> 3 9 95
2 -> 1 12 95
2 -> 2 14 95
2 -> 3 12 95
3 -> 1 9 95
3 -> 2 12 95
3 -> 3 3 38

Einzel-Wahrscheinlichkeiten: P("1")= 3 10 ; P("2")= 2 5 ; P("3")= 3 10 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'3' (P= 9 95 )
'3'-'1' (P= 9 95 )
'2'-'2' (P= 14 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 95 + 9 95 + 14 95 = 32 95


Ziehen bis erstmals x kommt

Beispiel:

Aus einem Kartenstapel mit 8 Karten der Farbe Herz und 4 weiteren Karten soll solange eine Karte gezogen werden, bis eine Herz-Karte erscheint. Wie groß ist die Wahrscheinlichkeit, dass dies im 5.Versuch passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 12 3 11 2 10 1 9 8 8
= 1 1 11 1 5 1 9 4 4
= 1 495

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

mit Zurücklegen (einfach)

Beispiel:

Eine faire Münze (d.h. die Wahrscheinlichkeit für Zahl und Wappen ist gleich groß) wird drei mal geworfen. Wie groß ist die Wahrscheinlichkeit für "genau 2 mal Wappen"?

Lösung einblenden
EreignisP
Zahl -> Zahl -> Zahl 1 8
Zahl -> Zahl -> Wappen 1 8
Zahl -> Wappen -> Zahl 1 8
Zahl -> Wappen -> Wappen 1 8
Wappen -> Zahl -> Zahl 1 8
Wappen -> Zahl -> Wappen 1 8
Wappen -> Wappen -> Zahl 1 8
Wappen -> Wappen -> Wappen 1 8

Einzel-Wahrscheinlichkeiten: P("Zahl")= 1 2 ; P("Wappen")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Zahl'-'Wappen'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Zahl'-'Wappen' (P= 1 8 )
  • 'Wappen'-'Wappen'-'Zahl' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8