Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

In einem Kartenstapel sind 5 verschiedene Karten. Eine Karte wird nach Mischen zufällig gezogen. Bestimme die Wahrscheinlichkeit, dass diese Karte ein Herz Ass ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Hieraus ergibt sich somit: P(Herz-Ass) = 1 5

Als Dezimalzahl ergibt das: P(Herz-Ass) = 1 5 = 1 : 5 ≈ 0.2

Als Prozentzahl ergibt das: P(Herz-Ass) ≈ 0.2 = 20%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 8 Kugeln, die mit Zahlen 1 bis 8 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl kleiner als 2 ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle Zahlen zwischen 1 und 8, die kleiner als 2 sind, suchern, finden wir eben die Zahlen von 1 bis 1,
also insgesamt 1 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(kleiner als 2) = 1 8

Als Dezimalzahl ergibt das: P(kleiner als 2) = 1 8 = 1 : 8 ≈ 0.125

Als Prozentzahl ergibt das: P(kleiner als 2) ≈ 0.125 = 12.5%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 7 Asse, 4 Könige, 8 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 7 + 4 + 8 + 5=24

Hieraus ergibt sich für ...

Ass: p= 7 24

König: p= 4 24 = 1 6

Dame: p= 8 24 = 1 3

Bube: p= 5 24

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 2 mal eine 6 zu würfeln?

Lösung einblenden

Da ja ausschließlich nach '6er' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '6er' und 'nicht 6er'

Einzel-Wahrscheinlichkeiten :"6er": 1 6 ; "nicht 6er": 5 6 ;

EreignisP
6er -> 6er -> 6er 1 216
6er -> 6er -> nicht 6er 5 216
6er -> nicht 6er -> 6er 5 216
6er -> nicht 6er -> nicht 6er 25 216
nicht 6er -> 6er -> 6er 5 216
nicht 6er -> 6er -> nicht 6er 25 216
nicht 6er -> nicht 6er -> 6er 25 216
nicht 6er -> nicht 6er -> nicht 6er 125 216

Einzel-Wahrscheinlichkeiten: P("6er")= 1 6 ; P("nicht 6er")= 5 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • '6er'-'6er'-'nicht 6er' (P= 5 216 )
  • '6er'-'nicht 6er'-'6er' (P= 5 216 )
  • 'nicht 6er'-'6er'-'6er' (P= 5 216 )
  • '6er'-'6er'-'6er' (P= 1 216 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

5 216 + 5 216 + 5 216 + 1 216 = 2 27


Ziehen mit Zurücklegen

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, mindestens 1 mal eine Zahl zu würfeln, die ein Teiler von 6 ist?

Lösung einblenden

Da ja ausschließlich nach 'Teiler' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Teiler' und 'nicht Teiler'

Einzel-Wahrscheinlichkeiten :"Teiler": 2 3 ; "nicht Teiler": 1 3 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Teiler' alle Möglichkeiten enthalten, außer eben kein 'Teiler' bzw. 0 mal 'Teiler'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'Teiler')=1- 1 9 = 8 9

EreignisP
Teiler -> Teiler 4 9
Teiler -> nicht Teiler 2 9
nicht Teiler -> Teiler 2 9
nicht Teiler -> nicht Teiler 1 9

Einzel-Wahrscheinlichkeiten: P("Teiler")= 2 3 ; P("nicht Teiler")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'Teiler'-'nicht Teiler' (P= 2 9 )
  • 'nicht Teiler'-'Teiler' (P= 2 9 )
  • 'Teiler'-'Teiler' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

2 9 + 2 9 + 4 9 = 8 9


ohne Zurücklegen (einfach)

Beispiel:

Auf einen Schüleraustausch bewerben sich 8 Mädchen und 4 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 1 an ein Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 14 55
Mädchen -> Mädchen -> Jungs 28 165
Mädchen -> Jungs -> Mädchen 28 165
Mädchen -> Jungs -> Jungs 4 55
Jungs -> Mädchen -> Mädchen 28 165
Jungs -> Mädchen -> Jungs 4 55
Jungs -> Jungs -> Mädchen 4 55
Jungs -> Jungs -> Jungs 1 55

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 3 ; P("Jungs")= 1 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Jungs'-'Jungs' (P= 4 55 )
'Jungs'-'Mädchen'-'Jungs' (P= 4 55 )
'Jungs'-'Jungs'-'Mädchen' (P= 4 55 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 55 + 4 55 + 4 55 = 12 55


Ziehen ohne Zurücklegen

Beispiel:

Auf einen Schüleraustausch bewerben sich 4 Mädchen und 6 Jungs. Weil aber leider weniger Plätze zur Verfügung stehen, muss gelost werden. Wie groß ist die Wahrscheinlichkeit, dass von den ersten 3 verlosten Plätzen genau 3 an eine Mädchen gehen?

Lösung einblenden
EreignisP
Mädchen -> Mädchen -> Mädchen 1 30
Mädchen -> Mädchen -> Jungs 1 10
Mädchen -> Jungs -> Mädchen 1 10
Mädchen -> Jungs -> Jungs 1 6
Jungs -> Mädchen -> Mädchen 1 10
Jungs -> Mädchen -> Jungs 1 6
Jungs -> Jungs -> Mädchen 1 6
Jungs -> Jungs -> Jungs 1 6

Einzel-Wahrscheinlichkeiten: P("Mädchen")= 2 5 ; P("Jungs")= 3 5 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Mädchen'-'Mädchen'-'Mädchen' (P= 1 30 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 30 = 1 30


nur Summen

Beispiel:

In einem Stapel sind 4 Karten vom Wert 7, 2 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 15 ist?

Lösung einblenden
EreignisP
7 -> 7 3 14
7 -> 8 1 7
7 -> 9 1 7
8 -> 7 1 7
8 -> 8 1 28
8 -> 9 1 14
9 -> 7 1 7
9 -> 8 1 14
9 -> 9 1 28

Einzel-Wahrscheinlichkeiten: P("7")= 1 2 ; P("8")= 1 4 ; P("9")= 1 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'8' (P= 1 7 )
'8'-'7' (P= 1 7 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 7 + 1 7 = 2 7


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 3. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 2 17 15 16
= 3 3 1 17 5 16
= 5 272

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 4 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine blaue Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die blaue Kugel im 3. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 4 6 3 5 2 4
= 1 1 5 1
= 1 5

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(