Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

In einem großen Paket sind viele kleine Kisten drin - siehe Abbildung rechts. Es wird ein Kiste zufällig aus dem großen Paket gezogen. Bestimme die Wahrscheinlichkeit, dass dabei die (orange) eingefärbte Kiste gezogen wird.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 28 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(eingefärbte Kiste) = 1 28

Als Dezimalzahl ergibt das: P(eingefärbte Kiste) = 1 28 = 1 : 28 ≈ 0.036

Als Prozentzahl ergibt das: P(eingefärbte Kiste) ≈ 0.036 = 3.6%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

In einem Behälter sind 6 Kugeln, die mit Zahlen 1 bis 6 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl durch 5 teilbar ist.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Wenn wir nun alle durch 5 teilbaren Zahlen zwischen 1 und 6 suchern, finden wir:
{5}, also insgesamt 1 günstige Möglichkeiten.

Hieraus ergibt sich somit: P(teilbar durch 5) = 1 6

Als Dezimalzahl ergibt das: P(teilbar durch 5) = 1 6 = 1 : 6 ≈ 0.167

Als Prozentzahl ergibt das: P(teilbar durch 5) ≈ 0.167 = 16.7%

Zufallsexperiment (einstufig)

Beispiel:

In einem Kartenstapel sind 8 Asse, 10 Könige, 7 Damen, und 5 Buben. Eine Karte wird nach Mischen zufällig gezogen. Bestimme jeweils die Wahrscheinlichkeiten für die verschiedenen Kartenwerte.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 8 + 10 + 7 + 5=30

Hieraus ergibt sich für ...

Ass: p= 8 30 = 4 15

König: p= 10 30 = 1 3

Dame: p= 7 30

Bube: p= 5 30 = 1 6

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 2 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?

Lösung einblenden
EreignisP
3er-Zahl -> 3er-Zahl 1 9
3er-Zahl -> nicht 3er 2 9
nicht 3er -> 3er-Zahl 2 9
nicht 3er -> nicht 3er 4 9

Einzel-Wahrscheinlichkeiten: P("3er-Zahl")= 1 3 ; P("nicht 3er")= 2 3 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht 3er'-'nicht 3er' (P= 4 9 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

4 9 = 4 9


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind verschiedene Kugeln, 7 vom Typ rot, 5 vom Typ blau, 9 vom Typ gelb und 3 vom Typ schwarz. Es wird 2 mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, 2 Kugeln gleicher Farbe zu ziehen?

Lösung einblenden
EreignisP
rot -> rot 49 576
rot -> blau 35 576
rot -> gelb 7 64
rot -> schwarz 7 192
blau -> rot 35 576
blau -> blau 25 576
blau -> gelb 5 64
blau -> schwarz 5 192
gelb -> rot 7 64
gelb -> blau 5 64
gelb -> gelb 9 64
gelb -> schwarz 3 64
schwarz -> rot 7 192
schwarz -> blau 5 192
schwarz -> gelb 3 64
schwarz -> schwarz 1 64

Einzel-Wahrscheinlichkeiten: P("rot")= 7 24 ; P("blau")= 5 24 ; P("gelb")= 3 8 ; P("schwarz")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'rot' (P= 49 576 )
  • 'blau'-'blau' (P= 25 576 )
  • 'gelb'-'gelb' (P= 9 64 )
  • 'schwarz'-'schwarz' (P= 1 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

49 576 + 25 576 + 9 64 + 1 64 = 41 144


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 5 Schüler mit NWT-Profil, 7 Schüler mit sprachlichem Profil, 9 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 5 24 ; "nicht NWT": 19 24 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'NWT')=1- 5 138 = 133 138

EreignisP
NWT -> NWT 5 138
NWT -> nicht NWT 95 552
nicht NWT -> NWT 95 552
nicht NWT -> nicht NWT 57 92

Einzel-Wahrscheinlichkeiten: P("NWT")= 5 24 ; P("nicht NWT")= 19 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 95 552 )
'nicht NWT'-'NWT' (P= 95 552 )
'nicht NWT'-'nicht NWT' (P= 57 92 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

95 552 + 95 552 + 57 92 = 133 138


Ziehen ohne Zurücklegen

Beispiel:

Bei der Auslosung zum Championsleague-Achtelfinale sind noch alle 4 deutsche Mannschaften im Lostopf mit den 16 Mannschaften. Wie groß ist die Wahrscheinlichkeit, dass von den erstem drei gezogenen Mannschaften mindestens 1 deutsche Mannschaften sind (wenn man mal von der falschen Annahme ausgeht, dass alle Mannschaften im gleichen Lostopf sind)?

Lösung einblenden

Da ja ausschließlich nach 'deutsch' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'deutsch' und 'nicht deutsch'

Einzel-Wahrscheinlichkeiten :"deutsch": 1 4 ; "nicht deutsch": 3 4 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal deutsch' alle Möglichkeiten enthalten, außer eben kein 'deutsch' bzw. 0 mal 'deutsch'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'deutsch')=1- 11 28 = 17 28

EreignisP
deutsch -> deutsch -> deutsch 1 140
deutsch -> deutsch -> nicht deutsch 3 70
deutsch -> nicht deutsch -> deutsch 3 70
deutsch -> nicht deutsch -> nicht deutsch 11 70
nicht deutsch -> deutsch -> deutsch 3 70
nicht deutsch -> deutsch -> nicht deutsch 11 70
nicht deutsch -> nicht deutsch -> deutsch 11 70
nicht deutsch -> nicht deutsch -> nicht deutsch 11 28

Einzel-Wahrscheinlichkeiten: P("deutsch")= 1 4 ; P("nicht deutsch")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'deutsch'-'nicht deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'deutsch'-'nicht deutsch' (P= 11 70 )
'nicht deutsch'-'nicht deutsch'-'deutsch' (P= 11 70 )
'deutsch'-'deutsch'-'nicht deutsch' (P= 3 70 )
'deutsch'-'nicht deutsch'-'deutsch' (P= 3 70 )
'nicht deutsch'-'deutsch'-'deutsch' (P= 3 70 )
'deutsch'-'deutsch'-'deutsch' (P= 1 140 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

11 70 + 11 70 + 11 70 + 3 70 + 3 70 + 3 70 + 1 140 = 17 28


nur Summen

Beispiel:

In einer 8. Klasse gibt es 10 SchülerInnen, die 13 Jahre alt sind, 10 14-Jährige und 4 15-Jährige. Ein Lehrer, der keine Ahnung über das Alter seiner Schüler hat, muss bei zwei SchülerInnen raten, wie alt die beiden zusammen sind. Er tippt auf 27 Jahre. Wie groß ist die Wahrscheinlichkeit, dass er zufällig richtig getippt hat?

Lösung einblenden
EreignisP
13 -> 13 15 92
13 -> 14 25 138
13 -> 15 5 69
14 -> 13 25 138
14 -> 14 15 92
14 -> 15 5 69
15 -> 13 5 69
15 -> 14 5 69
15 -> 15 1 46

Einzel-Wahrscheinlichkeiten: P("13")= 5 12 ; P("14")= 5 12 ; P("15")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'13'-'14' (P= 25 138 )
'14'-'13' (P= 25 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

25 138 + 25 138 = 25 69


Ziehen bis erstmals x kommt

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 2. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 3 18 15 17
= 3 6 5 17
= 5 34

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einem Lostopf sind 3 Kugeln mit einer Eins beschriftet, 8 Kugeln mit einer Zwei, 9 mit Drei und 4 mit einer Vier. Es werden zwei Kugeln gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkiet dass die beiden gezogenen Zahlen zusammen 5 ergeben?

Lösung einblenden
EreignisP
1 -> 1 1 92
1 -> 2 1 23
1 -> 3 9 184
1 -> 4 1 46
2 -> 1 1 23
2 -> 2 7 69
2 -> 3 3 23
2 -> 4 4 69
3 -> 1 9 184
3 -> 2 3 23
3 -> 3 3 23
3 -> 4 3 46
4 -> 1 1 46
4 -> 2 4 69
4 -> 3 3 46
4 -> 4 1 46

Einzel-Wahrscheinlichkeiten: P("1")= 1 8 ; P("2")= 1 3 ; P("3")= 3 8 ; P("4")= 1 6 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'1'-'4' (P= 1 46 )
'4'-'1' (P= 1 46 )
'2'-'3' (P= 3 23 )
'3'-'2' (P= 3 23 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 46 + 1 46 + 3 23 + 3 23 = 7 23