Aufgabenbeispiele von Zufallsexperimente
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wahrscheinlichkeit eines Ergebnisses
Beispiel:
(Alle Sektoren sind gleich groß)
Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Mit Abzählen erkennt man, dass es insgesamt 13 Möglichkeiten gibt.
Hieraus ergibt sich somit: P(oranger Sektor) =
Als Dezimalzahl ergibt das: P(oranger Sektor) = = 1 : 13 ≈ 0.077
Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.077 = 7.7%
Wahrscheinlichkeit eines Ereignisses
Beispiel:
In einem Behälter sind 24 Kugeln, die mit Zahlen 1 bis 24 beschriftet sind. Es wird eine Kugel zufällig ausgewählt. Bestimme die Wahrscheinlichkeit, dass diese Zahl eine Primzahl ist.
Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) =
Wenn wir nun alle Primzahlen zwischen 1 und 24 suchern, finden wir:
{2, 3, 5, 7, 11, 13, 17, 19, 23}, also insgesamt
9 günstige Möglichkeiten.
Hieraus ergibt sich somit: P(Primzahl) = =
Als Dezimalzahl ergibt das: P(Primzahl) = = 3 : 8 ≈ 0.375
Als Prozentzahl ergibt das: P(Primzahl) ≈ 0.375 = 37.5%
Zufallsexperiment (einstufig)
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
(Denk daran, den Bruch vollständig zu kürzen!)
Wir können am Glücksrad entweder die Winkelweite abschätzen und diese dann durch 360° teilen oder direkt den Winkel-Anteil (als Vielfache von Halb-, Viertel- oder Achtels-Kreisen) ablesen:
blau: Man erkennt einen Halbkreis => p=
grün: Man erkennt einen Viertelkreis => p=
gelb: Man erkennt einen Viertelkreis => p=
mit Zurücklegen (einfach)
Beispiel:
Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 0 mal eine durch 3 teilbare Zahl zu würfeln?
Ereignis | P |
---|---|
3er-Zahl -> 3er-Zahl -> 3er-Zahl | |
3er-Zahl -> 3er-Zahl -> nicht 3er | |
3er-Zahl -> nicht 3er -> 3er-Zahl | |
3er-Zahl -> nicht 3er -> nicht 3er | |
nicht 3er -> 3er-Zahl -> 3er-Zahl | |
nicht 3er -> 3er-Zahl -> nicht 3er | |
nicht 3er -> nicht 3er -> 3er-Zahl | |
nicht 3er -> nicht 3er -> nicht 3er |
Einzel-Wahrscheinlichkeiten: P("3er-Zahl")=; P("nicht 3er")=;
Die relevanten Pfade sind:- 'nicht 3er'-'nicht 3er'-'nicht 3er' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
Ziehen mit Zurücklegen
Beispiel:
(Alle Sektoren sind Vielfache
von Achtels-Kreisen)
Da ja ausschließlich nach 'A' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'A' und 'nicht A'
Einzel-Wahrscheinlichkeiten :"A": ; "nicht A": ;
Ereignis | P |
---|---|
A -> A | |
A -> nicht A | |
nicht A -> A | |
nicht A -> nicht A |
Einzel-Wahrscheinlichkeiten: P("A")=; P("nicht A")=;
Die relevanten Pfade sind:- 'A'-'A' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
=
ohne Zurücklegen (einfach)
Beispiel:
In einer Urne sind 7 rote und 3 blaue Kugeln. Es wird 3 mal ohne Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "höchstens 1 mal rot"?
Da ja ausschließlich nach 'rot' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'rot' und 'nicht rot'
Einzel-Wahrscheinlichkeiten :"rot": ; "nicht rot": ;
Ereignis | P |
---|---|
rot -> rot -> rot | |
rot -> rot -> nicht rot | |
rot -> nicht rot -> rot | |
rot -> nicht rot -> nicht rot | |
nicht rot -> rot -> rot | |
nicht rot -> rot -> nicht rot | |
nicht rot -> nicht rot -> rot | |
nicht rot -> nicht rot -> nicht rot |
Einzel-Wahrscheinlichkeiten: P("rot")=; P("nicht rot")=;
Die relevanten Pfade sind:
'rot'-'nicht rot'-'nicht rot' (P=)
'nicht rot'-'rot'-'nicht rot' (P=)
'nicht rot'-'nicht rot'-'rot' (P=)
'nicht rot'-'nicht rot'-'nicht rot' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 2 Asse, 4 Könige und 4 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "genau 1 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
Ereignis | P |
---|---|
Dame -> Dame | |
Dame -> nicht Dame | |
nicht Dame -> Dame | |
nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: P("Dame")=; P("nicht Dame")=;
Die relevanten Pfade sind:
'Dame'-'nicht Dame' (P=)
'nicht Dame'-'Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
nur Summen
Beispiel:
In einer Urne sind 3 Kugeln, die mit einer 1 beschriftet sind, 9 2er und 3 Kugeln mit einer 3. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Zahlen gerade 3 ist?
Ereignis | P |
---|---|
1 -> 1 | |
1 -> 2 | |
1 -> 3 | |
2 -> 1 | |
2 -> 2 | |
2 -> 3 | |
3 -> 1 | |
3 -> 2 | |
3 -> 3 |
Einzel-Wahrscheinlichkeiten: P("1")=; P("2")=; P("3")=;
Die relevanten Pfade sind:- '1'-'2' (P=)
- '2'-'1' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ =
Ziehen bis erstmals x kommt
Beispiel:
Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Wie groß ist die Wahrscheinlichkeit, dass dies beim 4. Losdurchgang passiert?
(Denk daran, den Bruch vollständig zu kürzen!)
Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:
P= ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅
=
Ziehen ohne Zurücklegen
Beispiel:
In einem Kartenstapel sind 4 Asse, 2 Könige und 2 Damen. Es werden 2 Karten vom Stapel gleichzeitig gezogen. Wie groß ist die Wahrscheinlichkeit "mindestens 1 mal Dame"?
Da ja ausschließlich nach 'Dame' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'Dame' und 'nicht Dame'
Einzel-Wahrscheinlichkeiten :"Dame": ; "nicht Dame": ;
Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal Dame' alle Möglichkeiten enthalten, außer eben kein 'Dame' bzw. 0 mal 'Dame'
Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:
P=1-P(0 mal 'Dame')=1- =
Ereignis | P |
---|---|
Dame -> Dame | |
Dame -> nicht Dame | |
nicht Dame -> Dame | |
nicht Dame -> nicht Dame |
Einzel-Wahrscheinlichkeiten: P("Dame")=; P("nicht Dame")=;
Die relevanten Pfade sind:
'Dame'-'nicht Dame' (P=)
'nicht Dame'-'Dame' (P=)
'Dame'-'Dame' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + =