Aufgabenbeispiele von Zufallsexperimente

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Wahrscheinlichkeit eines Ergebnisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung der markierte (orange) Sektor erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = 1 Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 9 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 1 9

Als Dezimalzahl ergibt das: P(oranger Sektor) = 1 9 = 1 : 9 ≈ 0.111

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.111 = 11.1%

Wahrscheinlichkeit eines Ereignisses

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

(Alle Sektoren sind gleich groß)

Bei dem abgebildeten Glücksrad sind alle Sektoren gleich groß. Bestimme die Wahrscheinlichkeit, dass bei einer Drehung einer der markierten (orangen) Sektoren erscheint.

Lösung einblenden

Die Wahrscheinlichkeit dieses Ergebnisses lässt sich berechen als P(Ergebnis) = Anzahl der günstigen Möglichkeiten Anzahl aller Möglichkeiten

Mit Abzählen erkennt man, dass es insgesamt 11 Möglichkeiten gibt.

Hieraus ergibt sich somit: P(oranger Sektor) = 4 11

Als Dezimalzahl ergibt das: P(oranger Sektor) = 4 11 = 4 : 11 ≈ 0.364

Als Prozentzahl ergibt das: P(oranger Sektor) ≈ 0.364 = 36.4%

Zufallsexperiment (einstufig)

Beispiel:

In einer Urne sind 2 blaue, 10 grüne, 4 gelbe und 4 rote Kugeln. Es wird eine Kugel gezogen. Bestimme jeweils die Wahrscheinlichkeit für die gezogene Farbe.
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit eines Ereignisses lässt sich berechen als p= Anzahl gesuchter Möglichkeiten Anzahl aller Möglichkeiten

Hierfür müssen wir erstmal die Gesamtzahl aller Möglichkeiten zusammenzählen: 2 + 10 + 4 + 4=20

Hieraus ergibt sich für ...

blau: p= 2 20 = 1 10

grün: p= 10 20 = 1 2

gelb: p= 4 20 = 1 5

rot: p= 4 20 = 1 5

mit Zurücklegen (einfach)

Beispiel:

Ein Würfel wird 3 mal geworfen. Wie groß ist die Wahrscheinlichkeit, genau 2 mal eine Primzahl zu würfeln?

Lösung einblenden
EreignisP
prim -> prim -> prim 1 8
prim -> prim -> nicht prim 1 8
prim -> nicht prim -> prim 1 8
prim -> nicht prim -> nicht prim 1 8
nicht prim -> prim -> prim 1 8
nicht prim -> prim -> nicht prim 1 8
nicht prim -> nicht prim -> prim 1 8
nicht prim -> nicht prim -> nicht prim 1 8

Einzel-Wahrscheinlichkeiten: P("prim")= 1 2 ; P("nicht prim")= 1 2 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'prim'-'prim'-'nicht prim' (P= 1 8 )
  • 'prim'-'nicht prim'-'prim' (P= 1 8 )
  • 'nicht prim'-'prim'-'prim' (P= 1 8 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 8 + 1 8 + 1 8 = 3 8


Ziehen mit Zurücklegen

Beispiel:

In einer Urne sind 9 rote, 9 gelbe, 3 blaue und 3 schwarze Kugeln. Es wird zwei mal mit Zurücklegen eine Kugel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal rot und 1 mal blau"?

Lösung einblenden
EreignisP
rot -> rot 9 64
rot -> blau 3 64
rot -> gelb 9 64
rot -> schwarz 3 64
blau -> rot 3 64
blau -> blau 1 64
blau -> gelb 3 64
blau -> schwarz 1 64
gelb -> rot 9 64
gelb -> blau 3 64
gelb -> gelb 9 64
gelb -> schwarz 3 64
schwarz -> rot 3 64
schwarz -> blau 1 64
schwarz -> gelb 3 64
schwarz -> schwarz 1 64

Einzel-Wahrscheinlichkeiten: P("rot")= 3 8 ; P("blau")= 1 8 ; P("gelb")= 3 8 ; P("schwarz")= 1 8 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'rot'-'blau' (P= 3 64 )
  • 'blau'-'rot' (P= 3 64 )

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

3 64 + 3 64 = 3 32


ohne Zurücklegen (einfach)

Beispiel:

In einer 8-ten Klasse gibt es 5 Schüler mit NWT-Profil, 7 Schüler mit sprachlichem Profil, 8 Schüler mit Musik-Profil und 4 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass mindestens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 5 24 ; "nicht NWT": 19 24 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'mindestens einmal NWT' alle Möglichkeiten enthalten, außer eben kein 'NWT' bzw. 0 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(0 mal 'NWT')=1- 57 92 = 35 92

EreignisP
NWT -> NWT 5 138
NWT -> nicht NWT 95 552
nicht NWT -> NWT 95 552
nicht NWT -> nicht NWT 57 92

Einzel-Wahrscheinlichkeiten: P("NWT")= 5 24 ; P("nicht NWT")= 19 24 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 95 552 )
'nicht NWT'-'NWT' (P= 95 552 )
'NWT'-'NWT' (P= 5 138 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

95 552 + 95 552 + 5 138 = 35 92


Ziehen ohne Zurücklegen

Beispiel:

In einem Kartenstapel sind 9 Karten der Farbe Kreuz, 5 der Farbe Pik, 3 der Farbe Herz und 3 der Farbe Karo. Es werden 2 Karten gleichzeitig vom Stapel gezogen. Wie groß ist die Wahrscheinlichkeit für "1 mal Herz und 1 mal Karo"? (Unter Farben versteht man beim Kartenspiel Herz, Kreuz, Pig und Karo - nicht rot und schwarz)

Lösung einblenden
EreignisP
Kreuz -> Kreuz 18 95
Kreuz -> Pik 9 76
Kreuz -> Herz 27 380
Kreuz -> Karo 27 380
Pik -> Kreuz 9 76
Pik -> Pik 1 19
Pik -> Herz 3 76
Pik -> Karo 3 76
Herz -> Kreuz 27 380
Herz -> Pik 3 76
Herz -> Herz 3 190
Herz -> Karo 9 380
Karo -> Kreuz 27 380
Karo -> Pik 3 76
Karo -> Herz 9 380
Karo -> Karo 3 190

Einzel-Wahrscheinlichkeiten: P("Kreuz")= 9 20 ; P("Pik")= 1 4 ; P("Herz")= 3 20 ; P("Karo")= 3 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'Herz'-'Karo' (P= 9 380 )
'Karo'-'Herz' (P= 9 380 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

9 380 + 9 380 = 9 190


nur Summen

Beispiel:

In einem Stapel sind 2 Karten vom Wert 7, 4 Karten vom Wert 8 und 2 9er. Man zieht 2 Karten aus dem Stapel. Wie groß ist die Wahrscheinlichkeit, dass die Summe der beiden Karten gerade 14 ist?

Lösung einblenden

Da ja ausschließlich nach '7' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: '7' und 'nicht 7'

Einzel-Wahrscheinlichkeiten :"7": 1 4 ; "nicht 7": 3 4 ;

EreignisP
7 -> 7 1 28
7 -> nicht 7 3 14
nicht 7 -> 7 3 14
nicht 7 -> nicht 7 15 28

Einzel-Wahrscheinlichkeiten: P("7")= 1 4 ; P("nicht 7")= 3 4 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'7'-'7' (P= 1 28 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

1 28 = 1 28


Ziehen bis erstmals x kommt

Beispiel:

In einer Urne sind 12 rote und 2 blaue Kugeln. Es soll (ohne Zurücklegen) solange gezogen werden, bis erstmals eine rote Kugel erscheint. Wie hoch ist die Wahrscheinlichkeit die rote Kugel im 2. Versuch zu ziehen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden

Die Wahrscheinlichkeit kann man dem einzig möglichen Pfad entlang ablesen:

P= 2 14 12 13
= 2 7 6 13
= 12 91

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Ziehen ohne Zurücklegen

Beispiel:

In einer 8-ten Klasse gibt es 7 Schüler mit NWT-Profil, 4 Schüler mit sprachlichem Profil, 6 Schüler mit Musik-Profil und 3 Schüler mit IMP-Profil. Der NWT-Lehrer hört, dass heute 2 Schüler fehlen würden. Wie groß ist die Wahrscheinlichkeit dass höchstens 1 Schüler mit NWT-Profil fehlen?

Lösung einblenden

Da ja ausschließlich nach 'NWT' gefragt ist, genügt es das Modell auf zwei Möglichkeiten zu beschränken: 'NWT' und 'nicht NWT'

Einzel-Wahrscheinlichkeiten :"NWT": 7 20 ; "nicht NWT": 13 20 ;

Wie man auch im Baumdiagramm unten gut erkennen kann, sind bei 'höchstens einmal NWT' alle Möglichkeiten enthalten, außer eben 2 mal 'NWT'

Man kann also am aller einfachsten die gesuchte Wahrscheinlichkeit über das Gegenereignis berechnen:

P=1-P(2 mal 'NWT')=1- 21 190 = 169 190

EreignisP
NWT -> NWT 21 190
NWT -> nicht NWT 91 380
nicht NWT -> NWT 91 380
nicht NWT -> nicht NWT 39 95

Einzel-Wahrscheinlichkeiten: P("NWT")= 7 20 ; P("nicht NWT")= 13 20 ;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:


'NWT'-'nicht NWT' (P= 91 380 )
'nicht NWT'-'NWT' (P= 91 380 )
'nicht NWT'-'nicht NWT' (P= 39 95 )


Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

91 380 + 91 380 + 39 95 = 169 190