Aufgabenbeispiele von umwandeln in Scheitelform

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
f(x)= x 2 +5x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach f(x) = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +5x = 0
x ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +5 = 0 | -5
x2 = -5

L={ -5 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
f(x)= 2 x 2 +8x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach f(x) = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 +8x = 0
2 x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -4+0 2 = -2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2|f(-2)) mit f(-2) = 2 ( -2 ) 2 +8( -2 ) = 8 -16 = -8.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-4 und x2=0 , Scheitel: S(-2|-8).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= x 2 +6x +4 .

Lösung einblenden

1. Weg

f(x)= x 2 +6x +4

Man erweitert die ersten beiden Summanden ( x 2 +6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 6x durch 2x und quadriert diese Ergebnis 3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +6x +9 -9 +4

= ( x +3 ) 2 -9 +4

= ( x +3 ) 2 -5

Jetzt kann man den Scheitel leicht ablesen: S(-3|-5).


2. Weg

Wir betrachten nun nur x 2 +6x . Deren Parabel sieht ja genau gleich aus wie x 2 +6x +4 nur um 4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +6x = 0
x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6 = 0 | -6
x2 = -6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-3|f(-3)).

f(-3) = ( -3 ) 2 +6( -3 ) +4 = 9 -18 +4 = -5

also: S(-3|-5).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit f(x)= 2 x 2 +4x -5 .

Lösung einblenden

1. Weg

f(x)= 2 x 2 +4x -5

= 2( x 2 +2x ) -5

Man erweitert die ersten beiden Summanden ( x 2 +2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 2x durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 2( x 2 +2x +1 -1 ) -5

= 2( x 2 +2x +1 ) + 2 · ( -1 ) -5

= 2 ( x +1 ) 2 -2 -5

= 2 ( x +1 ) 2 -7

Jetzt kann man den Scheitel leicht ablesen: S(-1|-7).


2. Weg

Wir betrachten nun nur 2 x 2 +4x . Deren Parabel sieht ja genau gleich aus wie 2 x 2 +4x -5 nur um -5 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 2 x 2 +4x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

2 x 2 +4x = 0
2 x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|f(-1)).

f(-1) = 2 ( -1 ) 2 +4( -1 ) -5 = 2 -4 -5 = -7

also: S(-1|-7).


Extremwertaufgaben (Anwend.)

Beispiel:

Ein Rechteck hat den Umfang 40 cm. Wie breit muss es sein, damit der Flächeninhalt des Rechtecks am größten wird.

Lösung einblenden

1. Weg

f(x)= - x 2 +20x

= -( x 2 -20x )

Man erweitert die ersten beiden Summanden ( x 2 -20x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -20x durch 2x und quadriert diese Ergebnis -10 zu 100. Diese 100 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 100, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= -( x 2 -20x +100 -100 )

= -( x 2 -20x +100 ) -1 · ( -100 )

= - ( x -10 ) 2 +100

= - ( x -10 ) 2 +100

Jetzt kann man den Scheitel leicht ablesen: S(10|100).


2. Weg

Von - x 2 +20x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

- x 2 +20x = 0
x ( -x +20 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +20 = 0 | -20
-x = -20 |:(-1 )
x2 = 20

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(10|f(10)).

f(10) = - 10 2 +2010 = -100 +200 = 100

also: S(10|100).


Für x=10 bekommen wir also mit 100 einen extremalen Wert von - x 2 +20x