Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 3x -1 ( -4 - x ) ( x +2 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -4 - x ) ( x +2 ) = 0
( -x -4 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-x -4 = 0 | +4
-x = 4 |:(-1 )
x1 = -4

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -4 ; -2 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 3x -1 ( -4 - x ) ( x +2 ) -13 "+0" ⋅ (-2) = -13 "-0"

Für x   x>-4   -4 + ⇒ f(x)= 3x -1 ( -4 - x ) ( x +2 ) -13 "-0" ⋅ (-2) = -13 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 3x -1 ( -4 - x ) ( x +2 ) -7 (-2) ⋅ "-0" = -7 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= 3x -1 ( -4 - x ) ( x +2 ) -7 (-2) ⋅ "+0" = -7 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
3x -1 ( -4 - x ) ( x +2 ) = 3x -1 - x 2 -6x -8

3x -1 - x 2 -6x -8 = x 2 · ( 3 x - 1 x 2 ) x 2 · ( -1 - 6 x - 8 x 2 ) = 3 x - 1 x 2 -1 - 6 x - 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3x -1 - x 2 -6x -8 = 3 x - 1 x 2 -1 - 6 x - 8 x 2 0+0 -1 +0+0 = 0 -1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 1 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

1 e 3x - e x = 1 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 1 ( e 2x -1 ) · e x +1 "-0" ⋅ (+1) = +1 "-0" -

Für x   x>0   0 + ⇒ f(x)= 1 ( e 2x -1 ) · e x +1 "+0" ⋅ (+1) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x +4 ( -5 + x ) ( x +4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -5 + x ) ( x +4 ) = 0
( x -5 ) ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -5 = 0 | +5
x1 = 5

2. Fall:

x +4 = 0 | -4
x2 = -4

also Definitionsmenge D=R\{ -4 ; 5 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 2x +4 ( -5 + x ) ( x +4 ) -4 (-9) ⋅ "-0" = -4 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= 2x +4 ( -5 + x ) ( x +4 ) -4 (-9) ⋅ "+0" = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 5 (von links und von rechts)

Für x   x<5   5 - ⇒ f(x)= 2x +4 ( -5 + x ) ( x +4 ) +14 "-0" ⋅ (+9) = +14 "-0" -

Für x   x>5   5 + ⇒ f(x)= 2x +4 ( -5 + x ) ( x +4 ) +14 "+0" ⋅ (+9) = +14 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 5 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +2 ) ( x +4 ) x +1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +1 = 0 | -1
x = -1

also Definitionsmenge D=R\{ -1 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= ( x +2 ) ( x +4 ) x +1 +3 "-0" -

Für x   x>-1   -1 + ⇒ f(x)= ( x +2 ) ( x +4 ) x +1 +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -1 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +6x +9 = ?⋅ ( x ) x 2 +6x +9

Jetzt testen wir x ( x +3 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -1 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -1. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
- x 2 ( x +3 ) 2 = - x 2 x 2 +6x +9

- x 2 x 2 +6x +9 = x 2 · ( -1 ) x 2 · ( 1 + 6 x + 9 x 2 ) = -1 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 x 2 +6x +9 = -1 1 + 6 x + 9 x 2 -1 1 +0+0 = -1 1 = -1

Mit f(x)= - x 2 ( x +3 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,4x -x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,4x -x 0 0

Für x → ∞ ⇒ f(x)= e 0,4x -x - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2 e -0,4x -3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2 e -0,4x -3 - -3 -

Für x → ∞ ⇒ f(x)= -2 e -0,4x -3 0 -3 -3

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -3 .