Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 3x -1 ( 4 + x ) ( x +2 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 4 + x ) ( x +2 ) = 0
( x +4 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +4 = 0 | -4
x1 = -4

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -4 ; -2 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 3x -1 ( 4 + x ) ( x +2 ) -13 "-0" ⋅ (-2) = -13 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= 3x -1 ( 4 + x ) ( x +2 ) -13 "+0" ⋅ (-2) = -13 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 3x -1 ( 4 + x ) ( x +2 ) -7 (+2) ⋅ "-0" = -7 "-0"

Für x   x>-2   -2 + ⇒ f(x)= 3x -1 ( 4 + x ) ( x +2 ) -7 (+2) ⋅ "+0" = -7 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
3x -1 ( 4 + x ) ( x +2 ) = 3x -1 x 2 +6x +8

3x -1 x 2 +6x +8 = x 2 · ( 3 x - 1 x 2 ) x 2 · ( 1 + 6 x + 8 x 2 ) = 3 x - 1 x 2 1 + 6 x + 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3x -1 x 2 +6x +8 = 3 x - 1 x 2 1 + 6 x + 8 x 2 0+0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 1 x -2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -2 = 0 | +2
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2 + ⇒ f(x)= 1 x -2 +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3 x 2 +3x +1 e 2x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x - e x = 0
( e x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e x -1 = 0 | +1
e x = 1 |ln(⋅)
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3 x 2 +3x +1 e 2x - e x = 3 x 2 +3x +1 ( e x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 3 x 2 +3x +1 ( e x -1 ) · e x +1 "-0" ⋅ (+1) = +1 "-0" -

Für x   x>0   0 + ⇒ f(x)= 3 x 2 +3x +1 ( e x -1 ) · e x +1 "+0" ⋅ (+1) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x -4 x 2 -2x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{0; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

x -4 x 2 -2x = x -4 x · ( x -2 )

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= x -4 x · ( x -2 ) -4 "-0" ⋅ (-2) = -4 "+0" -

Für x   x>0   0 + ⇒ f(x)= x -4 x · ( x -2 ) -4 "+0" ⋅ (-2) = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= x -4 x · ( x -2 ) -2 (+2) ⋅ "-0" = -2 "-0"

Für x   x>2   2 + ⇒ f(x)= x -4 x · ( x -2 ) -2 (+2) ⋅ "+0" = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +3 , passen bereits die Definitionslücke bei x = -3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +3 = x · 1 x x · ( 1 + 3 x ) = 1 x 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +3 = 1 x 1 + 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-3   -3- ⇒ f(x)= 1 x +3 +1 "-0" -

Für x   x>-3   -3+ ⇒ f(x)= 1 x +3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +3 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = -2 und bei x2 = -3 jeweils eine senkrechte Asymptote, bei y = -2 eine waagrechte Asymptote und in N1(-4|0) und N2(-5|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-2 und x2=-3 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +2 ) · ( x +3 ) = ? x 2 +5x +6

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x +4 ) · ( x +5 ) ) x 2 +5x +6 = ?⋅ ( x 2 +9x +20 ) x 2 +5x +6

Jetzt testen wir x 2 +9x +20 ( x +2 ) · ( x +3 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -2 zu bringen multiplizieren wir einfach den Zähler mit -2 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2( x 2 +9x +20 ) ( x +2 ) · ( x +3 ) = -2 x 2 -18x -40 x 2 +5x +6

-2 x 2 -18x -40 x 2 +5x +6 = x 2 · ( -2 - 18 x - 40 x 2 ) x 2 · ( 1 + 5 x + 6 x 2 ) = -2 - 18 x - 40 x 2 1 + 5 x + 6 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 -18x -40 x 2 +5x +6 = -2 - 18 x - 40 x 2 1 + 5 x + 6 x 2 -2 +0+0 1 +0+0 = -2 1 = -2

Mit f(x)= -2( x 2 +9x +20 ) ( x +2 ) · ( x +3 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,4x +4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,4x +4 +4

Für x → ∞ ⇒ f(x)= e -0,4x +4 0 +4 4

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 4 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -3 - e 0,4x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -3 - e 0,4x -3 +0 -3

Für x → ∞ ⇒ f(x)= -3 - e 0,4x -3 - -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -3 .