Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5 x 2 -2x +2 - x 2 +2x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 +2x = 0
x ( -x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +2 = 0 | -2
-x = -2 |:(-1 )
x2 = 2

also Definitionsmenge D=R\{0; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-5 x 2 -2x +2 - x 2 +2x = -5 x 2 -2x +2 x · ( -x +2 )

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -5 x 2 -2x +2 x · ( -x +2 ) +2 "-0" ⋅ (+2) = +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= -5 x 2 -2x +2 x · ( -x +2 ) +2 "+0" ⋅ (+2) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -5 x 2 -2x +2 x · ( -x +2 ) -22 (+2) ⋅ "+0" = -22 "+0" -

Für x   x>2   2 + ⇒ f(x)= -5 x 2 -2x +2 x · ( -x +2 ) -22 (+2) ⋅ "-0" = -22 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-5 x 2 -2x +2 - x 2 +2x = x 2 · ( -5 - 2 x + 2 x 2 ) x 2 · ( -1 + 2 x ) = -5 - 2 x + 2 x 2 -1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5 x 2 -2x +2 - x 2 +2x = -5 - 2 x + 2 x 2 -1 + 2 x -5 +0+0 -1 +0 = -5 -1 = 5

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 5 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -5 e 4x -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 4x -1 = 0 | +1
e 4x = 1 |ln(⋅)
4x = 0 |:4
x = 0 ≈ 0

also Definitionsmenge D=R\{0}

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 3x -5 e 4x -1 -5 "-0"

Für x   x>0   0 + ⇒ f(x)= 3x -5 e 4x -1 -5 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 x 2 +2x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-3 x 2 +2x = -3 x · ( x +2 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -3 x · ( x +2 ) -3 (-2) ⋅ "-0" = -3 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= -3 x · ( x +2 ) -3 (-2) ⋅ "+0" = -3 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -3 x · ( x +2 ) -3 "-0" ⋅ (+2) = -3 "-0"

Für x   x>0   0 + ⇒ f(x)= -3 x · ( x +2 ) -3 "+0" ⋅ (+2) = -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3x -3 ( x +3 ) ( x +1 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +3 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -3 ; -1 }

Wir untersuchen das Verhalten für x → -1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +1) erkennen, die wir dann kürzen können:

-3x -3 ( x +3 ) ( x +1 ) = -3x -3 ( x +3 ) ( x +1 ) = - 3 x +3

Für x → -1 ⇒ f(x)= -3x -3 ( x +3 ) ( x +1 ) = - 3 x +3 - 3 -1 +3 = - 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-1 | - 3 2 )


Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -3x -3 ( x +3 ) ( x +1 ) +6 "-0" ⋅ (-2) = +6 "+0"

Für x   x>-3   -3 + ⇒ f(x)= -3x -3 ( x +3 ) ( x +1 ) +6 "+0" ⋅ (-2) = +6 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +3 , passen bereits die Definitionslücke bei x = -3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +3 = x · 1 x x · ( 1 + 3 x ) = 1 x 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +3 = 1 x 1 + 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-3   -3- ⇒ f(x)= 1 x +3 +1 "-0" -

Für x   x>-3   -3+ ⇒ f(x)= 1 x +3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 3 x 2 +1 + 3 x 3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 3 x 2 +1 + 3 x 3 0 +1 +0 1

Für x → ∞ ⇒ f(x)= - 3 x 2 +1 + 3 x 3 0 +1 +0 1

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 1 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,3x 4 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,3x 4 x 2 0 0

Für x → ∞ ⇒ f(x)= e 0,3x 4 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).