Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -3 ( x -2 ) x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -2 ) x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{0; 2 }

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -3 ( x -2 ) x -3 (-2) ⋅ "-0" = -3 "+0" -

Für x   x>0   0 + ⇒ f(x)= -3 ( x -2 ) x -3 (-2) ⋅ "+0" = -3 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -3 ( x -2 ) x -3 "-0" ⋅ (+2) = -3 "-0"

Für x   x>2   2 + ⇒ f(x)= -3 ( x -2 ) x -3 "+0" ⋅ (+2) = -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3 ( x -2 ) x = -3 x 2 -2x

-3 x 2 -2x = x 2 · ( - 3 x 2 ) x 2 · ( 1 - 2 x ) = - 3 x 2 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 -2x = - 3 x 2 1 - 2 x 0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 1 1 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

1 - x = 0
-x +1 = 0 | -1
-x = -1 |:(-1 )
x = 1

also Definitionsmenge D=R\{ 1 }

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 1 1 - x +1 "+0"

Für x   x>1   1 + ⇒ f(x)= 1 1 - x +1 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2 ( 5 + x ) ( x -2 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 5 + x ) ( x -2 ) = 0
( x +5 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +5 = 0 | -5
x1 = -5

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{ -5 ; 2 }

Wir untersuchen nun das Verhalten für x → -5 (von links und von rechts)

Für x   x<-5   -5 - ⇒ f(x)= -2 ( 5 + x ) ( x -2 ) -2 "-0" ⋅ (-7) = -2 "+0" -

Für x   x>-5   -5 + ⇒ f(x)= -2 ( 5 + x ) ( x -2 ) -2 "+0" ⋅ (-7) = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -5 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -2 ( 5 + x ) ( x -2 ) -2 (+7) ⋅ "-0" = -2 "-0"

Für x   x>2   2 + ⇒ f(x)= -2 ( 5 + x ) ( x -2 ) -2 (+7) ⋅ "+0" = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x -2 x 2 -2x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{0; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

x -2 x 2 -2x = x -2 x · ( x -2 )

Wir untersuchen das Verhalten für x → 2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -2) erkennen, die wir dann kürzen können:

x -2 x · ( x -2 ) = x -2 x · ( x -2 ) = 1 x

Für x → 2 ⇒ f(x)= x -2 x · ( x -2 ) = 1 x 1 2 = 1 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(2 | 1 2 )


Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= x -2 x · ( x -2 ) -2 "-0" ⋅ (-2) = -2 "+0" -

Für x   x>0   0 + ⇒ f(x)= x -2 x · ( x -2 ) -2 "+0" ⋅ (-2) = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +2 , passen bereits die Definitionslücke bei x = -2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +2 = x · 1 x x · ( 1 + 2 x ) = 1 x 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +2 = 1 x 1 + 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-2   -2- ⇒ f(x)= 1 x +2 +1 "-0" -

Für x   x>-2   -2+ ⇒ f(x)= 1 x +2 +1 "+0"

Mit f(x)= 1 x +2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -3 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +3 , passen bereits die Definitionslücke bei x = -3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +3 = x · 1 x x · ( 1 + 3 x ) = 1 x 1 + 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +3 = 1 x 1 + 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-3   -3- ⇒ f(x)= 1 x +3 +1 "-0" -

Für x   x>-3   -3+ ⇒ f(x)= 1 x +3 +1 "+0"

Mit f(x)= 1 x +3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 2 x 2 -4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 2 x 2 -4 0 -4 -4

Für x → ∞ ⇒ f(x)= - 2 x 2 -4 0 -4 -4

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -4 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 3 e 0,4x -1 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 3 e 0,4x -1 0 -1 -1

Für x → ∞ ⇒ f(x)= 3 e 0,4x -1 -1

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -1 .