Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = - x 3 -4 x 2 +3x -4 - x 2 - x +2

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 - x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · ( -1 ) · 2 2( -1 )

x1,2 = +1 ± 1 +8 -2

x1,2 = +1 ± 9 -2

x1 = 1 + 9 -2 = 1 +3 -2 = 4 -2 = -2

x2 = 1 - 9 -2 = 1 -3 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 - x +2 = 0 |: -1

x 2 + x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = - 1 2 ± 9 4

x1 = - 1 2 - 3 2 = - 4 2 = -2

x2 = - 1 2 + 3 2 = 2 2 = 1

also Definitionsmenge D=R\{ -2 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

- x 3 -4 x 2 +3x -4 - x 2 - x +2 = - x 3 -4 x 2 +3x -4 - ( x +2 ) · ( x -1 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= - x 3 -4 x 2 +3x -4 - ( x +2 ) · ( x -1 ) -18 -1 ⋅"-0" ⋅ (-3) = -18 "-0"

Für x   x>-2   -2 + ⇒ f(x)= - x 3 -4 x 2 +3x -4 - ( x +2 ) · ( x -1 ) -18 -1 ⋅"+0" ⋅ (-3) = -18 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= - x 3 -4 x 2 +3x -4 - ( x +2 ) · ( x -1 ) -6 -1 ⋅(+3) ⋅ "-0" = -6 "+0" -

Für x   x>1   1 + ⇒ f(x)= - x 3 -4 x 2 +3x -4 - ( x +2 ) · ( x -1 ) -6 -1 ⋅(+3) ⋅ "+0" = -6 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

- x 3 -4 x 2 +3x -4 - x 2 - x +2 = x 2 · ( -x -4 + 3 x - 4 x 2 ) x 2 · ( -1 - 1 x + 2 x 2 ) = -x -4 + 3 x - 4 x 2 -1 - 1 x + 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 3 -4 x 2 +3x -4 - x 2 - x +2 = -x -4 + 3 x - 4 x 2 -1 - 1 x + 2 x 2 - -4 +0+0 -1 +0+0 =

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5 -3 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-3 + x = 0
x -3 = 0 | +3
x = 3

also Definitionsmenge D=R\{ 3 }

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= 5 -3 + x +5 "-0" -

Für x   x>3   3 + ⇒ f(x)= 5 -3 + x +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2 x 2 - x +1 x 2 -5x +4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

also Definitionsmenge D=R\{ 1 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2 x 2 - x +1 x 2 -5x +4 = -2 x 2 - x +1 ( x -4 ) · ( x -1 )

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -2 x 2 - x +1 ( x -4 ) · ( x -1 ) -2 (-3) ⋅ "-0" = -2 "+0" -

Für x   x>1   1 + ⇒ f(x)= -2 x 2 - x +1 ( x -4 ) · ( x -1 ) -2 (-3) ⋅ "+0" = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -2 x 2 - x +1 ( x -4 ) · ( x -1 ) -35 "-0" ⋅ (+3) = -35 "-0"

Für x   x>4   4 + ⇒ f(x)= -2 x 2 - x +1 ( x -4 ) · ( x -1 ) -35 "+0" ⋅ (+3) = -35 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x +2 ( x +1 ) ( x +2 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; -1 }

Wir untersuchen das Verhalten für x → -1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +1) erkennen, die wir dann kürzen können:

2x +2 ( x +1 ) ( x +2 ) = 2x +2 ( x +1 ) ( x +2 ) = 2 x +2

Für x → -1 ⇒ f(x)= 2x +2 ( x +1 ) ( x +2 ) = 2 x +2 2 -1 +2 = 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-1 | 2 )


Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 2x +2 ( x +1 ) ( x +2 ) -2 (-1) ⋅ "-0" = -2 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= 2x +2 ( x +1 ) ( x +2 ) -2 (-1) ⋅ "+0" = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -1 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +1 ) 2 = ? x 2 +2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +2x +1 = ?⋅ ( x ) x 2 +2x +1

Jetzt testen wir x ( x +1 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -1 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -1. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
- x 2 ( x +1 ) 2 = - x 2 x 2 +2x +1

- x 2 x 2 +2x +1 = x 2 · ( -1 ) x 2 · ( 1 + 2 x + 1 x 2 ) = -1 1 + 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 x 2 +2x +1 = -1 1 + 2 x + 1 x 2 -1 1 +0+0 = -1 1 = -1

Mit f(x)= - x 2 ( x +1 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = -1 und bei x2 = 1 jeweils eine senkrechte Asymptote, bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=1 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x -1 ) = ? x 2 -1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 -1 = ?⋅ ( x ) x 2 -1

Jetzt testen wir x ( x +1 ) · ( x -1 ) auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x ( x +1 ) · ( x -1 ) = x x 2 -1

x x 2 -1 = x 2 · 1 x x 2 · ( 1 - 1 x 2 ) = 1 x 1 - 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x x 2 -1 = 1 x 1 - 1 x 2 0 1 +0 = 0 1 = 0

Mit f(x)= x ( x +1 ) · ( x -1 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4 x 2 · e 0,4x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4 x 2 · e 0,4x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -4 x 2 · e 0,4x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2 + e 0,4x 3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2 + e 0,4x 3x -2 + 0 - -2 +0 -2

Für x → ∞ ⇒ f(x)= -2 + e 0,4x 3x -2 + -2 + e 0,4x 3x : ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -2 .