Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 5 x 3 +5 x 2 +4x +3 - x 2 -4x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 -4x = 0
- x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

also Definitionsmenge D=R\{ -4 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5 x 3 +5 x 2 +4x +3 - x 2 -4x = 5 x 3 +5 x 2 +4x +3 - x · ( x +4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 5 x 3 +5 x 2 +4x +3 - x · ( x +4 ) -253 -1 ⋅(-4) ⋅ "-0" = -253 "-0"

Für x   x>-4   -4 + ⇒ f(x)= 5 x 3 +5 x 2 +4x +3 - x · ( x +4 ) -253 -1 ⋅(-4) ⋅ "+0" = -253 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 5 x 3 +5 x 2 +4x +3 - x · ( x +4 ) +3 -1 ⋅"-0" ⋅ (+4) = +3 "+0"

Für x   x>0   0 + ⇒ f(x)= 5 x 3 +5 x 2 +4x +3 - x · ( x +4 ) +3 -1 ⋅"+0" ⋅ (+4) = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

5 x 3 +5 x 2 +4x +3 - x 2 -4x = x 2 · ( 5x +5 + 4 x + 3 x 2 ) x 2 · ( -1 - 4 x ) = 5x +5 + 4 x + 3 x 2 -1 - 4 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 5 x 3 +5 x 2 +4x +3 - x 2 -4x = 5x +5 + 4 x + 3 x 2 -1 - 4 x +5 +0+0 -1 +0 = -

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2 2 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

2 - x = 0
-x +2 = 0 | -2
-x = -2 |:(-1 )
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -2 2 - x -2 "+0" -

Für x   x>2   2 + ⇒ f(x)= -2 2 - x -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5 x 2 -3x -5 - x 2 +6x -5

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 +6x -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · ( -1 ) · ( -5 ) 2( -1 )

x1,2 = -6 ± 36 -20 -2

x1,2 = -6 ± 16 -2

x1 = -6 + 16 -2 = -6 +4 -2 = -2 -2 = 1

x2 = -6 - 16 -2 = -6 -4 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +6x -5 = 0 |: -1

x 2 -6x +5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

also Definitionsmenge D=R\{ 1 ; 5 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5 x 2 -3x -5 - x 2 +6x -5 = 5 x 2 -3x -5 - ( x -1 ) · ( x -5 )

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 5 x 2 -3x -5 - ( x -1 ) · ( x -5 ) -3 -1 ⋅"-0" ⋅ (-4) = -3 "-0"

Für x   x>1   1 + ⇒ f(x)= 5 x 2 -3x -5 - ( x -1 ) · ( x -5 ) -3 -1 ⋅"+0" ⋅ (-4) = -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 5 (von links und von rechts)

Für x   x<5   5 - ⇒ f(x)= 5 x 2 -3x -5 - ( x -1 ) · ( x -5 ) +105 -1 ⋅(+4) ⋅ "-0" = +105 "+0"

Für x   x>5   5 + ⇒ f(x)= 5 x 2 -3x -5 - ( x -1 ) · ( x -5 ) +105 -1 ⋅(+4) ⋅ "+0" = +105 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 5 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +3 ) ( x +5 ) x +2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +2 = 0 | -2
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= ( x +3 ) ( x +5 ) x +2 +3 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= ( x +3 ) ( x +5 ) x +2 +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -1 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +1 , passen bereits die Definitionslücke bei x = -1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +1 = x · 1 x x · ( 1 + 1 x ) = 1 x 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +1 = 1 x 1 + 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-1   -1- ⇒ f(x)= 1 x +1 +1 "-0" -

Für x   x>-1   -1+ ⇒ f(x)= 1 x +1 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +1 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 0 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=0 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +0 = ? x

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +0 , passen bereits die Definitionslücke bei x = 0 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +0 = x · 1 x x · 1 = 1 x 1

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +0 = 1 x 1 0 1 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<0   0- ⇒ f(x)= 1 x +0 +1 "-0" -

Für x   x>0   0+ ⇒ f(x)= 1 x +0 +1 "+0"

Mit f(x)= 1 x +0 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 5 x 2 +4 - 4 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 5 x 2 +4 - 4 x 2 0 +4 +0 4

Für x → ∞ ⇒ f(x)= 5 x 2 +4 - 4 x 2 0 +4 +0 4

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 4 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4 - x 2 · e -0,4x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4 - x 2 · e -0,4x -4 - · -4 - -

Für x → ∞ ⇒ f(x)= -4 - x 2 · e -0,4x -4 - · 0 -4 +0 -4 - x 2 · e -0,4x 0: ( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -4 .