Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -2 x 2 +4x -4 x 2 +2x -8

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +2x -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -8 ) = 1+ 8 = 9

x1,2 = -1 ± 9

x1 = -1 - 3 = -4

x2 = -1 + 3 = 2

also Definitionsmenge D=R\{ -4 ; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2 x 2 +4x -4 x 2 +2x -8 = -2 x 2 +4x -4 ( x -2 ) · ( x +4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -2 x 2 +4x -4 ( x -2 ) · ( x +4 ) -52 (-6) ⋅ "-0" = -52 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= -2 x 2 +4x -4 ( x -2 ) · ( x +4 ) -52 (-6) ⋅ "+0" = -52 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -2 x 2 +4x -4 ( x -2 ) · ( x +4 ) -4 "-0" ⋅ (+6) = -4 "-0"

Für x   x>2   2 + ⇒ f(x)= -2 x 2 +4x -4 ( x -2 ) · ( x +4 ) -4 "+0" ⋅ (+6) = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-2 x 2 +4x -4 x 2 +2x -8 = x 2 · ( -2 + 4 x - 4 x 2 ) x 2 · ( 1 + 2 x - 8 x 2 ) = -2 + 4 x - 4 x 2 1 + 2 x - 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 +4x -4 x 2 +2x -8 = -2 + 4 x - 4 x 2 1 + 2 x - 8 x 2 -2 +0+0 1 +0+0 = -2 1 = -2

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -2 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4x -5 e 4x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 4x - e x = 0
( e 3x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 3x -1 = 0 | +1
e 3x = 1 |ln(⋅)
3x = 0 |:3
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-4x -5 e 4x - e x = -4x -5 ( e 3x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -4x -5 ( e 3x -1 ) · e x -5 "-0" ⋅ (+1) = -5 "-0"

Für x   x>0   0 + ⇒ f(x)= -4x -5 ( e 3x -1 ) · e x -5 "+0" ⋅ (+1) = -5 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4x -5 ( x -1 ) x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{0; 1 }

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -4x -5 ( x -1 ) x -5 (-1) ⋅ "-0" = -5 "+0" -

Für x   x>0   0 + ⇒ f(x)= -4x -5 ( x -1 ) x -5 (-1) ⋅ "+0" = -5 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -4x -5 ( x -1 ) x -9 "-0" ⋅ (+1) = -9 "-0"

Für x   x>1   1 + ⇒ f(x)= -4x -5 ( x -1 ) x -9 "+0" ⋅ (+1) = -9 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -3 x 2 -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

also Definitionsmenge D=R\{ -1 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3x -3 x 2 -1 = 3x -3 ( x +1 ) · ( x -1 )

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

3x -3 ( x +1 ) · ( x -1 ) = 3x -3 ( x +1 ) · ( x -1 ) = 3 x +1

Für x → 1 ⇒ f(x)= 3x -3 ( x +1 ) · ( x -1 ) = 3 x +1 3 1 +1 = 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 3 2 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -3 ( x +1 ) · ( x -1 ) -6 "-0" ⋅ (-2) = -6 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3x -3 ( x +1 ) · ( x -1 ) -6 "+0" ⋅ (-2) = -6 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x1 = 3 und bei x2 = 4 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=3 und x2=4 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x -3 ) · ( x -4 ) = ? x 2 -7x +12

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 -7x +12 = ?⋅ ( x ) x 2 -7x +12

Jetzt testen wir x ( x -3 ) · ( x -4 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -3 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -3. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3 x 2 ( x -3 ) · ( x -4 ) = -3 x 2 x 2 -7x +12

-3 x 2 x 2 -7x +12 = x 2 · ( -3 ) x 2 · ( 1 - 7 x + 12 x 2 ) = -3 1 - 7 x + 12 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 x 2 -7x +12 = -3 1 - 7 x + 12 x 2 -3 1 +0+0 = -3 1 = -3

Mit f(x)= -3 x 2 ( x -3 ) · ( x -4 ) sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,1x x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,1x x 0 - 0

Für x → ∞ ⇒ f(x)= e 0,1x x ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 4 x 2 · e -0,1x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 4 x 2 · e -0,1x ·

Für x → ∞ ⇒ f(x)= 4 x 2 · e -0,1x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).