Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 1 ( 4 + x ) ( x -1 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 4 + x ) ( x -1 ) = 0
( x +4 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +4 = 0 | -4
x1 = -4

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{ -4 ; 1 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 1 ( 4 + x ) ( x -1 ) +1 "-0" ⋅ (-5) = +1 "+0"

Für x   x>-4   -4 + ⇒ f(x)= 1 ( 4 + x ) ( x -1 ) +1 "+0" ⋅ (-5) = +1 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 1 ( 4 + x ) ( x -1 ) +1 (+5) ⋅ "-0" = +1 "-0" -

Für x   x>1   1 + ⇒ f(x)= 1 ( 4 + x ) ( x -1 ) +1 (+5) ⋅ "+0" = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
1 ( 4 + x ) ( x -1 ) = 1 x 2 +3x -4

1 x 2 +3x -4 = x 2 · 1 x 2 x 2 · ( 1 + 3 x - 4 x 2 ) = 1 x 2 1 + 3 x - 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x 2 +3x -4 = 1 x 2 1 + 3 x - 4 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 4x +5 3 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

3 + x = 0
x +3 = 0 | -3
x = -3

also Definitionsmenge D=R\{ -3 }

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= 4x +5 3 + x -7 "-0"

Für x   x>-3   -3 + ⇒ f(x)= 4x +5 3 + x -7 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 x 2 +2x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +2x = 0
x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -2 ; 0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

2 x 2 +2x = 2 x · ( x +2 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= 2 x · ( x +2 ) +2 (-2) ⋅ "-0" = +2 "+0"

Für x   x>-2   -2 + ⇒ f(x)= 2 x · ( x +2 ) +2 (-2) ⋅ "+0" = +2 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 2 x · ( x +2 ) +2 "-0" ⋅ (+2) = +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= 2 x · ( x +2 ) +2 "+0" ⋅ (+2) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +2 ( x +1 ) ( x +3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x +3 = 0 | -3
x2 = -3

also Definitionsmenge D=R\{ -3 ; -1 }

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -2x +2 ( x +1 ) ( x +3 ) +8 (-2) ⋅ "-0" = +8 "+0"

Für x   x>-3   -3 + ⇒ f(x)= -2x +2 ( x +1 ) ( x +3 ) +8 (-2) ⋅ "+0" = +8 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -2x +2 ( x +1 ) ( x +3 ) +4 "-0" ⋅ (+2) = +4 "-0" -

Für x   x>-1   -1 + ⇒ f(x)= -2x +2 ( x +1 ) ( x +3 ) +4 "+0" ⋅ (+2) = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 2 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(1|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -2 ) 2 = ? x 2 -4x +4

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -1 ) x 2 -4x +4

Jetzt testen wir x -1 ( x -2 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x -1 ( x -2 ) 2 = x -1 x 2 -4x +4

x -1 x 2 -4x +4 = x 2 · ( 1 x - 1 x 2 ) x 2 · ( 1 - 4 x + 4 x 2 ) = 1 x - 1 x 2 1 - 4 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x -1 x 2 -4x +4 = 1 x - 1 x 2 1 - 4 x + 4 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= -( x -1 ) ( x -2 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 5 x + -1 e x + 3 x 3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 5 x + -1 e x + 3 x 3 0 + -1 0 +0 0 - +0 -

Für x → ∞ ⇒ f(x)= - 5 x + -1 e x + 3 x 3 0 + -1 +0 0+0+0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 4 -3 e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 4 -3 e 0,3x 4 +0 4

Für x → ∞ ⇒ f(x)= 4 -3 e 0,3x 4 - -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 4 .