Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -1 ( -4 + x ) ( x -3 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -4 + x ) ( x -3 ) = 0
( x -4 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -4 = 0 | +4
x1 = 4

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ 3 ; 4 }

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -1 ( -4 + x ) ( x -3 ) -1 (-1) ⋅ "-0" = -1 "+0" -

Für x   x>3   3 + ⇒ f(x)= -1 ( -4 + x ) ( x -3 ) -1 (-1) ⋅ "+0" = -1 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -1 ( -4 + x ) ( x -3 ) -1 "-0" ⋅ (+1) = -1 "-0"

Für x   x>4   4 + ⇒ f(x)= -1 ( -4 + x ) ( x -3 ) -1 "+0" ⋅ (+1) = -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-1 ( -4 + x ) ( x -3 ) = -1 x 2 -7x +12

-1 x 2 -7x +12 = x 2 · ( - 1 x 2 ) x 2 · ( 1 - 7 x + 12 x 2 ) = - 1 x 2 1 - 7 x + 12 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -1 x 2 -7x +12 = - 1 x 2 1 - 7 x + 12 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 e 2x -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x = 0 ≈ 0

also Definitionsmenge D=R\{0}

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 2 e 2x -1 +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= 2 e 2x -1 +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 1 x 2 +7x +12

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +7x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · 12 21

x1,2 = -7 ± 49 -48 2

x1,2 = -7 ± 1 2

x1 = -7 + 1 2 = -7 +1 2 = -6 2 = -3

x2 = -7 - 1 2 = -7 -1 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

also Definitionsmenge D=R\{ -4 ; -3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

1 x 2 +7x +12 = 1 ( x +3 ) · ( x +4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 1 ( x +3 ) · ( x +4 ) +1 (-1) ⋅ "-0" = +1 "+0"

Für x   x>-4   -4 + ⇒ f(x)= 1 ( x +3 ) · ( x +4 ) +1 (-1) ⋅ "+0" = +1 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= 1 ( x +3 ) · ( x +4 ) +1 "-0" ⋅ (+1) = +1 "-0" -

Für x   x>-3   -3 + ⇒ f(x)= 1 ( x +3 ) · ( x +4 ) +1 "+0" ⋅ (+1) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x +3 ( x +3 ) ( x +2 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +3 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -3 ; -2 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

x +3 ( x +3 ) ( x +2 ) = x +3 ( x +3 ) ( x +2 ) = 1 x +2

Für x → -3 ⇒ f(x)= x +3 ( x +3 ) ( x +2 ) = 1 x +2 1 -3 +2 = -1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | -1 )


Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= x +3 ( x +3 ) ( x +2 ) +1 (+1) ⋅ "-0" = +1 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= x +3 ( x +3 ) ( x +2 ) +1 (+1) ⋅ "+0" = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(-2|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +2 ) x 2 +6x +9

Jetzt testen wir x +2 ( x +3 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x +2 ( x +3 ) 2 = x +2 x 2 +6x +9

x +2 x 2 +6x +9 = x 2 · ( 1 x + 2 x 2 ) x 2 · ( 1 + 6 x + 9 x 2 ) = 1 x + 2 x 2 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x +2 x 2 +6x +9 = 1 x + 2 x 2 1 + 6 x + 9 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= x +2 ( x +3 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,3x +5 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,3x +5 0 +5 5

Für x → ∞ ⇒ f(x)= e 0,3x +5 +5

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 5 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2x · e -0,2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2x · e -0,2x ·

Für x → ∞ ⇒ f(x)= -2x · e -0,2x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).