Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 4 x 2 -2x +5 x 2 -3x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -3x = 0
x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{0; 3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4 x 2 -2x +5 x 2 -3x = 4 x 2 -2x +5 x · ( x -3 )

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 4 x 2 -2x +5 x · ( x -3 ) +5 "-0" ⋅ (-3) = +5 "+0"

Für x   x>0   0 + ⇒ f(x)= 4 x 2 -2x +5 x · ( x -3 ) +5 "+0" ⋅ (-3) = +5 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= 4 x 2 -2x +5 x · ( x -3 ) +35 (+3) ⋅ "-0" = +35 "-0" -

Für x   x>3   3 + ⇒ f(x)= 4 x 2 -2x +5 x · ( x -3 ) +35 (+3) ⋅ "+0" = +35 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

4 x 2 -2x +5 x 2 -3x = x 2 · ( 4 - 2 x + 5 x 2 ) x 2 · ( 1 - 3 x ) = 4 - 2 x + 5 x 2 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 4 x 2 -2x +5 x 2 -3x = 4 - 2 x + 5 x 2 1 - 3 x 4 +0+0 1 +0 = 4 1 = 4

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 4 .

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4x -1 e 4x -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 4x -1 = 0 | +1
e 4x = 1 |ln(⋅)
4x = 0 |:4
x = 0 ≈ 0

also Definitionsmenge D=R\{0}

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -4x -1 e 4x -1 -1 "-0"

Für x   x>0   0 + ⇒ f(x)= -4x -1 e 4x -1 -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x -5 - x 2 -7x -12

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 -7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = +7 ± 49 -48 -2

x1,2 = +7 ± 1 -2

x1 = 7 + 1 -2 = 7 +1 -2 = 8 -2 = -4

x2 = 7 - 1 -2 = 7 -1 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x -12 = 0 |: -1

x 2 +7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

also Definitionsmenge D=R\{ -4 ; -3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

x -5 - x 2 -7x -12 = x -5 - ( x +4 ) · ( x +3 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= x -5 - ( x +4 ) · ( x +3 ) -9 -1 ⋅"-0" ⋅ (-1) = -9 "-0"

Für x   x>-4   -4 + ⇒ f(x)= x -5 - ( x +4 ) · ( x +3 ) -9 -1 ⋅"+0" ⋅ (-1) = -9 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= x -5 - ( x +4 ) · ( x +3 ) -8 -1 ⋅(+1) ⋅ "-0" = -8 "+0" -

Für x   x>-3   -3 + ⇒ f(x)= x -5 - ( x +4 ) · ( x +3 ) -8 -1 ⋅(+1) ⋅ "+0" = -8 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -3 ( x -3 ) ( x -1 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -3 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -3 = 0 | +3
x1 = 3

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{ 1 ; 3 }

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

3x -3 ( x -3 ) ( x -1 ) = 3x -3 ( x -3 ) ( x -1 ) = 3 x -3

Für x → 1 ⇒ f(x)= 3x -3 ( x -3 ) ( x -1 ) = 3 x -3 3 1 -3 = - 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | - 3 2 )


Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= 3x -3 ( x -3 ) ( x -1 ) +6 "-0" ⋅ (+2) = +6 "-0" -

Für x   x>3   3 + ⇒ f(x)= 3x -3 ( x -3 ) ( x -1 ) +6 "+0" ⋅ (+2) = +6 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -1 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +1 , passen bereits die Definitionslücke bei x = -1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +1 = x · 1 x x · ( 1 + 1 x ) = 1 x 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +1 = 1 x 1 + 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-1   -1- ⇒ f(x)= 1 x +1 +1 "-0" -

Für x   x>-1   -1+ ⇒ f(x)= 1 x +1 +1 "+0"

Mit f(x)= 1 x +1 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 2 eine waagrechte Asymptote und eine Nullstelle in N(1|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +1 ) 2 = ? x 2 +2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -1 ) x 2 +2x +1

Jetzt testen wir x -1 ( x +1 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf 2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient 2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
2 ( x -1 ) 2 ( x +1 ) 2 = 2 x 2 -4x +2 x 2 +2x +1

2 x 2 -4x +2 x 2 +2x +1 = x 2 · ( 2 - 4 x + 2 x 2 ) x 2 · ( 1 + 2 x + 1 x 2 ) = 2 - 4 x + 2 x 2 1 + 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 2 x 2 -4x +2 x 2 +2x +1 = 2 - 4 x + 2 x 2 1 + 2 x + 1 x 2 2 +0+0 1 +0+0 = 2 1 = 2

Mit f(x)= 2 ( x -1 ) 2 ( x +1 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,4x -4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,4x -4 0 -4 -4

Für x → ∞ ⇒ f(x)= e 0,4x -4 -4

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -4 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2x · e 0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2x · e 0,5x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= 2x · e 0,5x ·

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).