Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 3 x 2 +2x -3

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

also Definitionsmenge D=R\{ -3 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3 x 2 +2x -3 = 3 ( x -1 ) · ( x +3 )

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= 3 ( x -1 ) · ( x +3 ) +3 (-4) ⋅ "-0" = +3 "+0"

Für x   x>-3   -3 + ⇒ f(x)= 3 ( x -1 ) · ( x +3 ) +3 (-4) ⋅ "+0" = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 3 ( x -1 ) · ( x +3 ) +3 "-0" ⋅ (+4) = +3 "-0" -

Für x   x>1   1 + ⇒ f(x)= 3 ( x -1 ) · ( x +3 ) +3 "+0" ⋅ (+4) = +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

3 x 2 +2x -3 = x 2 · 3 x 2 x 2 · ( 1 + 2 x - 3 x 2 ) = 3 x 2 1 + 2 x - 3 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3 x 2 +2x -3 = 3 x 2 1 + 2 x - 3 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -1 -2 - x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-2 - x = 0
-x -2 = 0 | +2
-x = 2 |:(-1 )
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -1 -2 - x -1 "+0" -

Für x   x>-2   -2 + ⇒ f(x)= -1 -2 - x -1 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 ( -3 - x ) ( x -1 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -3 - x ) ( x -1 ) = 0
( -x -3 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-x -3 = 0 | +3
-x = 3 |:(-1 )
x1 = -3

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{ -3 ; 1 }

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -3 ( -3 - x ) ( x -1 ) -3 "+0" ⋅ (-4) = -3 "-0"

Für x   x>-3   -3 + ⇒ f(x)= -3 ( -3 - x ) ( x -1 ) -3 "-0" ⋅ (-4) = -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -3 ( -3 - x ) ( x -1 ) -3 (-4) ⋅ "-0" = -3 "+0" -

Für x   x>1   1 + ⇒ f(x)= -3 ( -3 - x ) ( x -1 ) -3 (-4) ⋅ "+0" = -3 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x -2 ) ( x -4 ) x -4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -4 = 0 | +4
x = 4

also Definitionsmenge D=R\{ 4 }

Wir untersuchen das Verhalten für x → 4 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -4) erkennen, die wir dann kürzen können:

( x -2 ) ( x -4 ) x -4 = ( x -2 ) ( x -4 ) x -4 = x -2

Für x → 4 ⇒ f(x)= ( x -2 ) ( x -4 ) x -4 = x -2 4 -2 = 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(4 | 2 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -1 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -3 ) 2 = ? x 2 -6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( 1 ) x 2 -6x +9

Jetzt testen wir 1 ( x -3 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, brauchen wir im Zähler auch eine quadratische Funktion, die ja aber keine Nullstelle haben darf. (z.B. x²+1). Außerdem muss der Koeffizient vor dem x² in unserem Fall -1 sein, damit die waagrechte Asymptote (nach Ausklammern und Kürzen von x²) =-1 wird. Dies funktioniert z.B. mit dem Zähler -( x 2 +1 )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-( x 2 +1 ) ( x -3 ) 2 = - x 2 -1 x 2 -6x +9

- x 2 -1 x 2 -6x +9 = x 2 · ( -1 - 1 x 2 ) x 2 · ( 1 - 6 x + 9 x 2 ) = -1 - 1 x 2 1 - 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 -1 x 2 -6x +9 = -1 - 1 x 2 1 - 6 x + 9 x 2 -1 +0 1 +0+0 = -1 1 = -1

Mit f(x)= x 2 +1 ( x -3 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 1 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -1 , passen bereits die Definitionslücke bei x = 1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -1 = x · 1 x x · ( 1 - 1 x ) = 1 x 1 - 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -1 = 1 x 1 - 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<1   1- ⇒ f(x)= 1 x -1 +1 "-0" -

Für x   x>1   1+ ⇒ f(x)= 1 x -1 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -1 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 5 x 3 + 4 e x - 3 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 5 x 3 + 4 e x - 3 x 2 0 + 4 0 +0 0 + +0

Für x → ∞ ⇒ f(x)= - 5 x 3 + 4 e x - 3 x 2 0 + 4 +0 0+0+0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -3 +2 e -0,1x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -3 +2 e -0,1x -3 +

Für x → ∞ ⇒ f(x)= -3 +2 e -0,1x -3 +0 -3

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -3 .