Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = x -3 ( x +1 ) ( x -3 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +1 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +1 = 0 | -1
x1 = -1

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ -1 ; 3 }

Wir untersuchen das Verhalten für x → 3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -3) erkennen, die wir dann kürzen können:

x -3 ( x +1 ) ( x -3 ) = x -3 ( x +1 ) ( x -3 ) = 1 x +1

Für x → 3 ⇒ f(x)= x -3 ( x +1 ) ( x -3 ) = 1 x +1 1 3 +1 = 1 4

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(3 | 1 4 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= x -3 ( x +1 ) ( x -3 ) -4 "-0" ⋅ (-4) = -4 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= x -3 ( x +1 ) ( x -3 ) -4 "+0" ⋅ (-4) = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x -3 ( x +1 ) ( x -3 ) = x -3 x 2 -2x -3

x -3 x 2 -2x -3 = x 2 · ( 1 x - 3 x 2 ) x 2 · ( 1 - 2 x - 3 x 2 ) = 1 x - 3 x 2 1 - 2 x - 3 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x -3 x 2 -2x -3 = 1 x - 3 x 2 1 - 2 x - 3 x 2 0+0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -1 x -4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -4 = 0 | +4
x = 4

also Definitionsmenge D=R\{ 4 }

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -1 x -4 -1 "-0"

Für x   x>4   4 + ⇒ f(x)= -1 x -4 -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4 x 2 +5x +4 x 2 -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

also Definitionsmenge D=R\{ -1 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-4 x 2 +5x +4 x 2 -1 = -4 x 2 +5x +4 ( x +1 ) · ( x -1 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -4 x 2 +5x +4 ( x +1 ) · ( x -1 ) -5 "-0" ⋅ (-2) = -5 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= -4 x 2 +5x +4 ( x +1 ) · ( x -1 ) -5 "+0" ⋅ (-2) = -5 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -4 x 2 +5x +4 ( x +1 ) · ( x -1 ) +5 (+2) ⋅ "-0" = +5 "-0" -

Für x   x>1   1 + ⇒ f(x)= -4 x 2 +5x +4 ( x +1 ) · ( x -1 ) +5 (+2) ⋅ "+0" = +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +4 ( x -2 ) ( x -3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -2 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ 2 ; 3 }

Wir untersuchen das Verhalten für x → 2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -2) erkennen, die wir dann kürzen können:

-2x +4 ( x -2 ) ( x -3 ) = -2x +4 ( x -2 ) ( x -3 ) = -2 1 · ( x -3 )

Für x → 2 ⇒ f(x)= -2x +4 ( x -2 ) ( x -3 ) = -2 1 · ( x -3 ) -2 1 · ( 2 -3 ) = 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(2 | 2 )


Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -2x +4 ( x -2 ) ( x -3 ) -2 (+1) ⋅ "-0" = -2 "-0"

Für x   x>3   3 + ⇒ f(x)= -2x +4 ( x -2 ) ( x -3 ) -2 (+1) ⋅ "+0" = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 0 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=0 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +0 = ? x

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +0 , passen bereits die Definitionslücke bei x = 0 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +0 = x · 1 x x · 1 = 1 x 1

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +0 = 1 x 1 0 1 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<0   0- ⇒ f(x)= 1 x +0 +1 "-0" -

Für x   x>0   0+ ⇒ f(x)= 1 x +0 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +0 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -2 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-2 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +2 , passen bereits die Definitionslücke bei x = -2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +2 = x · 1 x x · ( 1 + 2 x ) = 1 x 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +2 = 1 x 1 + 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-2   -2- ⇒ f(x)= 1 x +2 +1 "-0" -

Für x   x>-2   -2+ ⇒ f(x)= 1 x +2 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 3 x 2 +3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 3 x 2 +3 0 +3 3

Für x → ∞ ⇒ f(x)= 3 x 2 +3 0 +3 3

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 3 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -3 + e 0,3x x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -3 + e 0,3x x -3 + 0 - -3 +0 -3

Für x → ∞ ⇒ f(x)= -3 + e 0,3x x -3 + -3 + e 0,3x x : ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = -3 .