Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x -2 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

2x -2 e 3x - e x = 2x -2 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 2x -2 ( e 2x -1 ) · e x -2 "-0" ⋅ (+1) = -2 "-0"

Für x   x>0   0 + ⇒ f(x)= 2x -2 ( e 2x -1 ) · e x -2 "+0" ⋅ (+1) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3 ( 1 - x ) ( x -1 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 1 - x ) ( x -1 ) = 0
( -x +1 ) ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-x +1 = 0 | -1
-x = -1 |:(-1 )
x1 = 1

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{ 1 }

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 3 ( 1 - x ) ( x -1 ) +3 "+0" ⋅ "-0" = +3 "-0" -

Für x   x>1   1 + ⇒ f(x)= 3 ( 1 - x ) ( x -1 ) +3 "-0" ⋅ "+0" = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 ohne VZW (beides - )

alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 3 x 3 -2 x 2 + x -1 ( x -1 ) ( x +1 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -1 ; 1 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3 x 3 -2 x 2 + x -1 ( x -1 ) ( x +1 ) -7 (-2) ⋅ "-0" = -7 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3 x 3 -2 x 2 + x -1 ( x -1 ) ( x +1 ) -7 (-2) ⋅ "+0" = -7 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 3 x 3 -2 x 2 + x -1 ( x -1 ) ( x +1 ) +1 "-0" ⋅ (+2) = +1 "-0" -

Für x   x>1   1 + ⇒ f(x)= 3 x 3 -2 x 2 + x -1 ( x -1 ) ( x +1 ) +1 "+0" ⋅ (+2) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
3 x 3 -2 x 2 + x -1 ( x -1 ) ( x +1 ) = 3 x 3 -2 x 2 + x -1 x 2 -1

3 x 3 -2 x 2 + x -1 x 2 -1 = x 2 · ( 3x -2 + 1 x - 1 x 2 ) x 2 · ( 1 - 1 x 2 ) = 3x -2 + 1 x - 1 x 2 1 - 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3 x 3 -2 x 2 + x -1 x 2 -1 = 3x -2 + 1 x - 1 x 2 1 - 1 x 2 -2 +0+0 1 +0 =

Die Funktion besitzt folglich keine waagrechte Asymptote.

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,4x 4 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,4x 4 x 2 0 0

Für x → ∞ ⇒ f(x)= e 0,4x 4 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = 2 und bei x2 = -1 jeweils eine senkrechte Asymptote, bei y = -1 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=2 und x2=-1 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x -2 ) · ( x +1 ) = ? x 2 - x -2

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 - x -2 = ?⋅ ( x ) x 2 - x -2

Jetzt testen wir x ( x -2 ) · ( x +1 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -1 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -1. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
- x 2 ( x -2 ) · ( x +1 ) = - x 2 x 2 - x -2

- x 2 x 2 - x -2 = x 2 · ( -1 ) x 2 · ( 1 - 1 x - 2 x 2 ) = -1 1 - 1 x - 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 x 2 - x -2 = -1 1 - 1 x - 2 x 2 -1 1 +0+0 = -1 1 = -1

Mit f(x)= - x 2 ( x -2 ) · ( x +1 ) sind also alle Bedingungen erfüllt

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,3x 5 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,3x 5 x 2 0 0

Für x → ∞ ⇒ f(x)= e 0,3x 5 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).