Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -1 ( -4 + x ) ( x -4 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -4 + x ) ( x -4 ) = 0
( x -4 ) 2 = 0 | 2
x -4 = 0
x -4 = 0 | +4
x = 4

also Definitionsmenge D=R\{ 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-1 ( -4 + x ) ( x -4 ) = -1 ( x -4 ) 2

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -1 ( x -4 ) 2 -1 "+0" -

Für x   x>4   4 + ⇒ f(x)= -1 ( x -4 ) 2 -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 ohne VZW (beides - )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-1 ( -4 + x ) ( x -4 ) = -1 x 2 -8x +16

-1 x 2 -8x +16 = x 2 · ( - 1 x 2 ) x 2 · ( 1 - 8 x + 16 x 2 ) = - 1 x 2 1 - 8 x + 16 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -1 x 2 -8x +16 = - 1 x 2 1 - 8 x + 16 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x -2 x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x = 0

also Definitionsmenge D=R\{0}

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -x -2 x -2 "-0"

Für x   x>0   0 + ⇒ f(x)= -x -2 x -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4 x 2 + x -12

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 + x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · 1 · ( -12 ) 21

x1,2 = -1 ± 1 +48 2

x1,2 = -1 ± 49 2

x1 = -1 + 49 2 = -1 +7 2 = 6 2 = 3

x2 = -1 - 49 2 = -1 -7 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( -12 ) = 1 4 + 12 = 1 4 + 48 4 = 49 4

x1,2 = - 1 2 ± 49 4

x1 = - 1 2 - 7 2 = - 8 2 = -4

x2 = - 1 2 + 7 2 = 6 2 = 3

also Definitionsmenge D=R\{ -4 ; 3 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-4 x 2 + x -12 = -4 ( x -3 ) · ( x +4 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -4 ( x -3 ) · ( x +4 ) -4 (-7) ⋅ "-0" = -4 "+0" -

Für x   x>-4   -4 + ⇒ f(x)= -4 ( x -3 ) · ( x +4 ) -4 (-7) ⋅ "+0" = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -4 ( x -3 ) · ( x +4 ) -4 "-0" ⋅ (+7) = -4 "-0"

Für x   x>3   3 + ⇒ f(x)= -4 ( x -3 ) · ( x +4 ) -4 "+0" ⋅ (+7) = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x -4 ( x -2 ) ( x -4 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -2 ) ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -2 = 0 | +2
x1 = 2

2. Fall:

x -4 = 0 | +4
x2 = 4

also Definitionsmenge D=R\{ 2 ; 4 }

Wir untersuchen das Verhalten für x → 2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -2) erkennen, die wir dann kürzen können:

2x -4 ( x -2 ) ( x -4 ) = 2x -4 ( x -2 ) ( x -4 ) = 2 x -4

Für x → 2 ⇒ f(x)= 2x -4 ( x -2 ) ( x -4 ) = 2 x -4 2 2 -4 = -1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(2 | -1 )


Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= 2x -4 ( x -2 ) ( x -4 ) +4 (+2) ⋅ "-0" = +4 "-0" -

Für x   x>4   4 + ⇒ f(x)= 2x -4 ( x -2 ) ( x -4 ) +4 (+2) ⋅ "+0" = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -2 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -2 eine waagrechte Asymptote und eine Nullstelle in N(-5|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-2 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +2 ) 2 = ? x 2 +4x +4

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +5 ) x 2 +4x +4

Jetzt testen wir x +5 ( x +2 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2 ( x +5 ) 2 ( x +2 ) 2 = -2 x 2 -20x -50 x 2 +4x +4

-2 x 2 -20x -50 x 2 +4x +4 = x 2 · ( -2 - 20 x - 50 x 2 ) x 2 · ( 1 + 4 x + 4 x 2 ) = -2 - 20 x - 50 x 2 1 + 4 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 -20x -50 x 2 +4x +4 = -2 - 20 x - 50 x 2 1 + 4 x + 4 x 2 -2 +0+0 1 +0+0 = -2 1 = -2

Mit f(x)= -2 ( x +5 ) 2 ( x +2 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 1 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -1 , passen bereits die Definitionslücke bei x = 1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -1 = x · 1 x x · ( 1 - 1 x ) = 1 x 1 - 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -1 = 1 x 1 - 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<1   1- ⇒ f(x)= 1 x -1 +1 "-0" -

Für x   x>1   1+ ⇒ f(x)= 1 x -1 +1 "+0"

Mit f(x)= 1 x -1 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 5 x 2 · e 0,1x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 5 x 2 · e 0,1x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= 5 x 2 · e 0,1x ·

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4 e -0,3x +3 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4 e -0,3x +3 - +3 -

Für x → ∞ ⇒ f(x)= -4 e -0,3x +3 0 +3 3

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 3 .