Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 3 - x 2 +2x +15

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 +2x +15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 15 2( -1 )

x1,2 = -2 ± 4 +60 -2

x1,2 = -2 ± 64 -2

x1 = -2 + 64 -2 = -2 +8 -2 = 6 -2 = -3

x2 = -2 - 64 -2 = -2 -8 -2 = -10 -2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +2x +15 = 0 |: -1

x 2 -2x -15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -15 ) = 1+ 15 = 16

x1,2 = 1 ± 16

x1 = 1 - 4 = -3

x2 = 1 + 4 = 5

also Definitionsmenge D=R\{ -3 ; 5 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3 - x 2 +2x +15 = 3 - ( x +3 ) · ( x -5 )

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= 3 - ( x +3 ) · ( x -5 ) +3 -1 ⋅"-0" ⋅ (-8) = +3 "-0" -

Für x   x>-3   -3 + ⇒ f(x)= 3 - ( x +3 ) · ( x -5 ) +3 -1 ⋅"+0" ⋅ (-8) = +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 5 (von links und von rechts)

Für x   x<5   5 - ⇒ f(x)= 3 - ( x +3 ) · ( x -5 ) +3 -1 ⋅(+8) ⋅ "-0" = +3 "+0"

Für x   x>5   5 + ⇒ f(x)= 3 - ( x +3 ) · ( x -5 ) +3 -1 ⋅(+8) ⋅ "+0" = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 5 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

3 - x 2 +2x +15 = x 2 · 3 x 2 x 2 · ( -1 + 2 x + 15 x 2 ) = 3 x 2 -1 + 2 x + 15 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3 - x 2 +2x +15 = 3 x 2 -1 + 2 x + 15 x 2 0 -1 +0+0 = 0 -1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -5 e 4x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 4x - e x = 0
( e 3x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 3x -1 = 0 | +1
e 3x = 1 |ln(⋅)
3x = 0 |:3
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-5 e 4x - e x = -5 ( e 3x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -5 ( e 3x -1 ) · e x -5 "-0" ⋅ (+1) = -5 "-0"

Für x   x>0   0 + ⇒ f(x)= -5 ( e 3x -1 ) · e x -5 "+0" ⋅ (+1) = -5 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -4 - x 2 -5x -4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 -5x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = +5 ± 25 -16 -2

x1,2 = +5 ± 9 -2

x1 = 5 + 9 -2 = 5 +3 -2 = 8 -2 = -4

x2 = 5 - 9 -2 = 5 -3 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -5x -4 = 0 |: -1

x 2 +5x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

also Definitionsmenge D=R\{ -4 ; -1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3x -4 - x 2 -5x -4 = 3x -4 - ( x +4 ) · ( x +1 )

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= 3x -4 - ( x +4 ) · ( x +1 ) -16 -1 ⋅"-0" ⋅ (-3) = -16 "-0"

Für x   x>-4   -4 + ⇒ f(x)= 3x -4 - ( x +4 ) · ( x +1 ) -16 -1 ⋅"+0" ⋅ (-3) = -16 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -4 - ( x +4 ) · ( x +1 ) -7 -1 ⋅(+3) ⋅ "-0" = -7 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3x -4 - ( x +4 ) · ( x +1 ) -7 -1 ⋅(+3) ⋅ "+0" = -7 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x 2 -1 3x -3

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

3x -3 = 0 | +3
3x = 3 |:3
x = 1

also Definitionsmenge D=R\{ 1 }

und den Zähler:

x 2 -1 3x -3 = ( x +1 ) ( x -1 ) 3x -3

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

x 2 -1 3x -3 = ( x +1 ) ( x -1 ) 3x -3 = 1 3 ( x +1 )

Für x → 1 ⇒ f(x)= x 2 -1 3x -3 = 1 3 ( x +1 ) 1 3 ( 1 +1 ) = 2 3

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 2 3 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 0 eine waagrechte Asymptote und eine Nullstelle in N(2|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +1 ) 2 = ? x 2 +2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -2 ) x 2 +2x +1

Jetzt testen wir x -2 ( x +1 ) 2 auf die waagrechte Asymptote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
x -2 ( x +1 ) 2 = x -2 x 2 +2x +1

x -2 x 2 +2x +1 = x 2 · ( 1 x - 2 x 2 ) x 2 · ( 1 + 2 x + 1 x 2 ) = 1 x - 2 x 2 1 + 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= x -2 x 2 +2x +1 = 1 x - 2 x 2 1 + 2 x + 1 x 2 0+0 1 +0+0 = 0 1 = 0

Mit f(x)= -( x -2 ) ( x +1 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,1x 2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,1x 2x - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,1x 2x 0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - e -0,1x -4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - e -0,1x -4 - -4 -

Für x → ∞ ⇒ f(x)= - e -0,1x -4 0 -4 -4

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -4 .