Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -2x +2 - x 2 -4x -4

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 -4x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = +4 ± 16 -16 -2

x1,2 = +4 ± 0 -2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 4 -2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -4x -4 = 0 |: -1

x 2 +4x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

also Definitionsmenge D=R\{ -2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2x +2 - x 2 -4x -4 = -2x +2 - ( x +2 ) 2

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -2x +2 - ( x +2 ) 2 +6 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= -2x +2 - ( x +2 ) 2 +6 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 ohne VZW (beides - )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-2x +2 - x 2 -4x -4 = x 2 · ( - 2 x + 2 x 2 ) x 2 · ( -1 - 4 x - 4 x 2 ) = - 2 x + 2 x 2 -1 - 4 x - 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2x +2 - x 2 -4x -4 = - 2 x + 2 x 2 -1 - 4 x - 4 x 2 0+0 -1 +0+0 = 0 -1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4x +3 -4 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-4 + x = 0
x -4 = 0 | +4
x = 4

also Definitionsmenge D=R\{ 4 }

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -4x +3 -4 + x -13 "-0"

Für x   x>4   4 + ⇒ f(x)= -4x +3 -4 + x -13 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -x -2 ( 5 + x ) ( x -3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( 5 + x ) ( x -3 ) = 0
( x +5 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +5 = 0 | -5
x1 = -5

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ -5 ; 3 }

Wir untersuchen nun das Verhalten für x → -5 (von links und von rechts)

Für x   x<-5   -5 - ⇒ f(x)= -x -2 ( 5 + x ) ( x -3 ) +3 "-0" ⋅ (-8) = +3 "+0"

Für x   x>-5   -5 + ⇒ f(x)= -x -2 ( 5 + x ) ( x -3 ) +3 "+0" ⋅ (-8) = +3 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -5 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -x -2 ( 5 + x ) ( x -3 ) -5 (+8) ⋅ "-0" = -5 "-0"

Für x   x>3   3 + ⇒ f(x)= -x -2 ( 5 + x ) ( x -3 ) -5 (+8) ⋅ "+0" = -5 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +1 ) ( x +3 ) x +3

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +3 = 0 | -3
x = -3

also Definitionsmenge D=R\{ -3 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

( x +1 ) ( x +3 ) x +3 = ( x +1 ) ( x +3 ) x +3 = x +1

Für x → -3 ⇒ f(x)= ( x +1 ) ( x +3 ) x +3 = x +1 -3 +1 = -2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | -2 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 0 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=0 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +0 = ? x

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +0 , passen bereits die Definitionslücke bei x = 0 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +0 = x · 1 x x · 1 = 1 x 1

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +0 = 1 x 1 0 1 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<0   0- ⇒ f(x)= 1 x +0 +1 "-0" -

Für x   x>0   0+ ⇒ f(x)= 1 x +0 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +0 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 5 x 2 + -5 e x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 5 x 2 + -5 e x 0 + -5 0 0 - -

Für x → ∞ ⇒ f(x)= 5 x 2 + -5 e x 0 + -5 0+0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -4 -4 e -0,5x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -4 -4 e -0,5x -4 - -

Für x → ∞ ⇒ f(x)= -4 -4 e -0,5x -4 +0 -4

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -4 .