Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -4x +3 ( x +4 ) ( x +4 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +4 ) ( x +4 ) = 0
( x +4 ) 2 = 0 | 2
x +4 = 0
x +4 = 0 | -4
x = -4

also Definitionsmenge D=R\{ -4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-4x +3 ( x +4 ) ( x +4 ) = -4x +3 ( x +4 ) 2

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -4x +3 ( x +4 ) 2 +19 "+0"

Für x   x>-4   -4 + ⇒ f(x)= -4x +3 ( x +4 ) 2 +19 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 ohne VZW (beides + )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-4x +3 ( x +4 ) ( x +4 ) = -4x +3 x 2 +8x +16

-4x +3 x 2 +8x +16 = x 2 · ( - 4 x + 3 x 2 ) x 2 · ( 1 + 8 x + 16 x 2 ) = - 4 x + 3 x 2 1 + 8 x + 16 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -4x +3 x 2 +8x +16 = - 4 x + 3 x 2 1 + 8 x + 16 x 2 0+0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

2 e 3x - e x = 2 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 2 ( e 2x -1 ) · e x +2 "-0" ⋅ (+1) = +2 "-0" -

Für x   x>0   0 + ⇒ f(x)= 2 ( e 2x -1 ) · e x +2 "+0" ⋅ (+1) = +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5x -1 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5x -1 e 3x - e x = 5x -1 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 5x -1 ( e 2x -1 ) · e x -1 "-0" ⋅ (+1) = -1 "-0"

Für x   x>0   0 + ⇒ f(x)= 5x -1 ( e 2x -1 ) · e x -1 "+0" ⋅ (+1) = -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +2 ( x -1 ) ( x -3 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -1 = 0 | +1
x1 = 1

2. Fall:

x -3 = 0 | +3
x2 = 3

also Definitionsmenge D=R\{ 1 ; 3 }

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

-2x +2 ( x -1 ) ( x -3 ) = -2x +2 ( x -1 ) ( x -3 ) = -2 1 · ( x -3 )

Für x → 1 ⇒ f(x)= -2x +2 ( x -1 ) ( x -3 ) = -2 1 · ( x -3 ) -2 1 · ( 1 -3 ) = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 1 )


Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -2x +2 ( x -1 ) ( x -3 ) -4 (+2) ⋅ "-0" = -4 "-0"

Für x   x>3   3 + ⇒ f(x)= -2x +2 ( x -1 ) ( x -3 ) -4 (+2) ⋅ "+0" = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -3 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -2 eine waagrechte Asymptote und eine Nullstelle in N(-2|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-3 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +3 ) 2 = ? x 2 +6x +9

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +2 ) x 2 +6x +9

Jetzt testen wir x +2 ( x +3 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2 ( x +2 ) 2 ( x +3 ) 2 = -2 x 2 -8x -8 x 2 +6x +9

-2 x 2 -8x -8 x 2 +6x +9 = x 2 · ( -2 - 8 x - 8 x 2 ) x 2 · ( 1 + 6 x + 9 x 2 ) = -2 - 8 x - 8 x 2 1 + 6 x + 9 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 -8x -8 x 2 +6x +9 = -2 - 8 x - 8 x 2 1 + 6 x + 9 x 2 -2 +0+0 1 +0+0 = -2 1 = -2

Mit f(x)= -2 ( x +2 ) 2 ( x +3 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -2 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-2 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +2 , passen bereits die Definitionslücke bei x = -2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +2 = x · 1 x x · ( 1 + 2 x ) = 1 x 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +2 = 1 x 1 + 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-2   -2- ⇒ f(x)= 1 x +2 +1 "-0" -

Für x   x>-2   -2+ ⇒ f(x)= 1 x +2 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e -0,5x -x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e -0,5x -x ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= e -0,5x -x 0 - 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -3x · e -0,2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -3x · e -0,2x ·

Für x → ∞ ⇒ f(x)= -3x · e -0,2x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).