Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -3 x 3 -4 x 2 +4x -4 - x 2 +2x +8

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

- x 2 +2x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 8 2( -1 )

x1,2 = -2 ± 4 +32 -2

x1,2 = -2 ± 36 -2

x1 = -2 + 36 -2 = -2 +6 -2 = 4 -2 = -2

x2 = -2 - 36 -2 = -2 -6 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +2x +8 = 0 |: -1

x 2 -2x -8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

also Definitionsmenge D=R\{ -2 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-3 x 3 -4 x 2 +4x -4 - x 2 +2x +8 = -3 x 3 -4 x 2 +4x -4 - ( x +2 ) · ( x -4 )

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -3 x 3 -4 x 2 +4x -4 - ( x +2 ) · ( x -4 ) -4 -1 ⋅"-0" ⋅ (-6) = -4 "-0"

Für x   x>-2   -2 + ⇒ f(x)= -3 x 3 -4 x 2 +4x -4 - ( x +2 ) · ( x -4 ) -4 -1 ⋅"+0" ⋅ (-6) = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -3 x 3 -4 x 2 +4x -4 - ( x +2 ) · ( x -4 ) -244 -1 ⋅(+6) ⋅ "-0" = -244 "+0" -

Für x   x>4   4 + ⇒ f(x)= -3 x 3 -4 x 2 +4x -4 - ( x +2 ) · ( x -4 ) -244 -1 ⋅(+6) ⋅ "+0" = -244 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-3 x 3 -4 x 2 +4x -4 - x 2 +2x +8 = x 2 · ( -3x -4 + 4 x - 4 x 2 ) x 2 · ( -1 + 2 x + 8 x 2 ) = -3x -4 + 4 x - 4 x 2 -1 + 2 x + 8 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 3 -4 x 2 +4x -4 - x 2 +2x +8 = -3x -4 + 4 x - 4 x 2 -1 + 2 x + 8 x 2 - -4 +0+0 -1 +0+0 =

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x = 0

also Definitionsmenge D=R\{0}

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= -3 x -3 "-0"

Für x   x>0   0 + ⇒ f(x)= -3 x -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -5x +1 x 2 -6x +5

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

also Definitionsmenge D=R\{ 1 ; 5 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-5x +1 x 2 -6x +5 = -5x +1 ( x -5 ) · ( x -1 )

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -5x +1 ( x -5 ) · ( x -1 ) -4 (-4) ⋅ "-0" = -4 "+0" -

Für x   x>1   1 + ⇒ f(x)= -5x +1 ( x -5 ) · ( x -1 ) -4 (-4) ⋅ "+0" = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 5 (von links und von rechts)

Für x   x<5   5 - ⇒ f(x)= -5x +1 ( x -5 ) · ( x -1 ) -24 "-0" ⋅ (+4) = -24 "-0"

Für x   x>5   5 + ⇒ f(x)= -5x +1 ( x -5 ) · ( x -1 ) -24 "+0" ⋅ (+4) = -24 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 5 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +2 ) ( x +3 ) x +1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +1 = 0 | -1
x = -1

also Definitionsmenge D=R\{ -1 }

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= ( x +2 ) ( x +3 ) x +1 +2 "-0" -

Für x   x>-1   -1 + ⇒ f(x)= ( x +2 ) ( x +3 ) x +1 +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 1 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -1 , passen bereits die Definitionslücke bei x = 1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -1 = x · 1 x x · ( 1 - 1 x ) = 1 x 1 - 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -1 = 1 x 1 - 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<1   1- ⇒ f(x)= 1 x -1 +1 "-0" -

Für x   x>1   1+ ⇒ f(x)= 1 x -1 +1 "+0"

Mit f(x)= 1 x -1 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 5 x 3 + 3 e x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 5 x 3 + 3 e x 0 + 3 0 0 +

Für x → ∞ ⇒ f(x)= 5 x 3 + 3 e x 0 + 3 0+0 0

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2 +4 e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2 +4 e 0,3x 2 +0 2

Für x → ∞ ⇒ f(x)= 2 +4 e 0,3x 2 +

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 2 .