Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 4 ( x -2 ) x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -2 ) x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{0; 2 }

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 4 ( x -2 ) x +4 (-2) ⋅ "-0" = +4 "+0"

Für x   x>0   0 + ⇒ f(x)= 4 ( x -2 ) x +4 (-2) ⋅ "+0" = +4 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 4 ( x -2 ) x +4 "-0" ⋅ (+2) = +4 "-0" -

Für x   x>2   2 + ⇒ f(x)= 4 ( x -2 ) x +4 "+0" ⋅ (+2) = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
4 ( x -2 ) x = 4 x 2 -2x

4 x 2 -2x = x 2 · 4 x 2 x 2 · ( 1 - 2 x ) = 4 x 2 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 4 x 2 -2x = 4 x 2 1 - 2 x 0 1 +0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3 2 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

2 + x = 0
x +2 = 0 | -2
x = -2

also Definitionsmenge D=R\{ -2 }

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -3 2 + x -3 "-0"

Für x   x>-2   -2 + ⇒ f(x)= -3 2 + x -3 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4 x 2 - x -5 ( -3 - x ) ( x -2 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( -3 - x ) ( x -2 ) = 0
( -x -3 ) ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-x -3 = 0 | +3
-x = 3 |:(-1 )
x1 = -3

2. Fall:

x -2 = 0 | +2
x2 = 2

also Definitionsmenge D=R\{ -3 ; 2 }

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -4 x 2 - x -5 ( -3 - x ) ( x -2 ) -38 "+0" ⋅ (-5) = -38 "-0"

Für x   x>-3   -3 + ⇒ f(x)= -4 x 2 - x -5 ( -3 - x ) ( x -2 ) -38 "-0" ⋅ (-5) = -38 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -4 x 2 - x -5 ( -3 - x ) ( x -2 ) -23 (-5) ⋅ "-0" = -23 "+0" -

Für x   x>2   2 + ⇒ f(x)= -4 x 2 - x -5 ( -3 - x ) ( x -2 ) -23 (-5) ⋅ "+0" = -23 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2x +6 ( x +3 ) ( x +5 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +3 ) ( x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +5 = 0 | -5
x2 = -5

also Definitionsmenge D=R\{ -5 ; -3 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

2x +6 ( x +3 ) ( x +5 ) = 2x +6 ( x +3 ) ( x +5 ) = 2 x +5

Für x → -3 ⇒ f(x)= 2x +6 ( x +3 ) ( x +5 ) = 2 x +5 2 -3 +5 = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | 1 )


Wir untersuchen nun das Verhalten für x → -5 (von links und von rechts)

Für x   x<-5   -5 - ⇒ f(x)= 2x +6 ( x +3 ) ( x +5 ) -4 (-2) ⋅ "-0" = -4 "+0" -

Für x   x>-5   -5 + ⇒ f(x)= 2x +6 ( x +3 ) ( x +5 ) -4 (-2) ⋅ "+0" = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -5 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -2 , passen bereits die Definitionslücke bei x = 2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -2 = x · 1 x x · ( 1 - 2 x ) = 1 x 1 - 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -2 = 1 x 1 - 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<2   2- ⇒ f(x)= 1 x -2 +1 "-0" -

Für x   x>2   2+ ⇒ f(x)= 1 x -2 +1 "+0"

Mit f(x)= 1 x -2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 2 eine waagrechte Asymptote und eine Nullstelle in N(0|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x +1 ) 2 = ? x 2 +2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x +0 ) x 2 +2x +1 = ?⋅ ( x ) x 2 +2x +1

Jetzt testen wir x ( x +1 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf 2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient 2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
2 x 2 ( x +1 ) 2 = 2 x 2 x 2 +2x +1

2 x 2 x 2 +2x +1 = x 2 · 2 x 2 · ( 1 + 2 x + 1 x 2 ) = 2 1 + 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 2 x 2 x 2 +2x +1 = 2 1 + 2 x + 1 x 2 2 1 +0+0 = 2 1 = 2

Mit f(x)= 2 x 2 ( x +1 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,1x 2 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,1x 2 x 2 0 0

Für x → ∞ ⇒ f(x)= e 0,1x 2 x 2 ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 4 e 0,4x +4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 4 e 0,4x +4 0 +4 4

Für x → ∞ ⇒ f(x)= 4 e 0,4x +4 +4

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 4 .