Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -4 x 3 + x 2 +2x -2 ( x -3 ) ( x +4 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -3 ) ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -3 = 0 | +3
x1 = 3

2. Fall:

x +4 = 0 | -4
x2 = -4

also Definitionsmenge D=R\{ -4 ; 3 }

Wir untersuchen nun das Verhalten für x → -4 (von links und von rechts)

Für x   x<-4   -4 - ⇒ f(x)= -4 x 3 + x 2 +2x -2 ( x -3 ) ( x +4 ) +262 (-7) ⋅ "-0" = +262 "+0"

Für x   x>-4   -4 + ⇒ f(x)= -4 x 3 + x 2 +2x -2 ( x -3 ) ( x +4 ) +262 (-7) ⋅ "+0" = +262 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -4 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -4 x 3 + x 2 +2x -2 ( x -3 ) ( x +4 ) -95 "-0" ⋅ (+7) = -95 "-0"

Für x   x>3   3 + ⇒ f(x)= -4 x 3 + x 2 +2x -2 ( x -3 ) ( x +4 ) -95 "+0" ⋅ (+7) = -95 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-4 x 3 + x 2 +2x -2 ( x -3 ) ( x +4 ) = -4 x 3 + x 2 +2x -2 x 2 + x -12

-4 x 3 + x 2 +2x -2 x 2 + x -12 = x 2 · ( -4x +1 + 2 x - 2 x 2 ) x 2 · ( 1 + 1 x - 12 x 2 ) = -4x +1 + 2 x - 2 x 2 1 + 1 x - 12 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -4 x 3 + x 2 +2x -2 x 2 + x -12 = -4x +1 + 2 x - 2 x 2 1 + 1 x - 12 x 2 - +1 +0+0 1 +0+0 = -

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 x -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -1 = 0 | +1
x = 1

also Definitionsmenge D=R\{ 1 }

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 2 x -1 +2 "-0" -

Für x   x>1   1 + ⇒ f(x)= 2 x -1 +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -4 x 2 -5x +4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

x1,2 = +5 ± 25 -16 2

x1,2 = +5 ± 9 2

x1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

x2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

also Definitionsmenge D=R\{ 1 ; 4 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-4 x 2 -5x +4 = -4 ( x -4 ) · ( x -1 )

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= -4 ( x -4 ) · ( x -1 ) -4 (-3) ⋅ "-0" = -4 "+0" -

Für x   x>1   1 + ⇒ f(x)= -4 ( x -4 ) · ( x -1 ) -4 (-3) ⋅ "+0" = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 4 (von links und von rechts)

Für x   x<4   4 - ⇒ f(x)= -4 ( x -4 ) · ( x -1 ) -4 "-0" ⋅ (+3) = -4 "-0"

Für x   x>4   4 + ⇒ f(x)= -4 ( x -4 ) · ( x -1 ) -4 "+0" ⋅ (+3) = -4 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 4 mit einem VZW von + nach -

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -3x -9 ( x +3 ) ( x +1 )

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +3 ) ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +1 = 0 | -1
x2 = -1

also Definitionsmenge D=R\{ -3 ; -1 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

-3x -9 ( x +3 ) ( x +1 ) = -3x -9 ( x +3 ) ( x +1 ) = - 3 x +1

Für x → -3 ⇒ f(x)= -3x -9 ( x +3 ) ( x +1 ) = - 3 x +1 - 3 -3 +1 = 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | 3 2 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -3x -9 ( x +3 ) ( x +1 ) -6 (+2) ⋅ "-0" = -6 "-0"

Für x   x>-1   -1 + ⇒ f(x)= -3x -9 ( x +3 ) ( x +1 ) -6 (+2) ⋅ "+0" = -6 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= -2 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-2 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +2 , passen bereits die Definitionslücke bei x = -2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +2 = x · 1 x x · ( 1 + 2 x ) = 1 x 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +2 = 1 x 1 + 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-2   -2- ⇒ f(x)= 1 x +2 +1 "-0" -

Für x   x>-2   -2+ ⇒ f(x)= 1 x +2 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 3 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=3 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x -3

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x -3 , passen bereits die Definitionslücke bei x = 3 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x -3 = x · 1 x x · ( 1 - 3 x ) = 1 x 1 - 3 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x -3 = 1 x 1 - 3 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<3   3- ⇒ f(x)= 1 x -3 +1 "-0" -

Für x   x>3   3+ ⇒ f(x)= 1 x -3 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x -3 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = e 0,3x -2x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= e 0,3x -2x 0 0

Für x → ∞ ⇒ f(x)= e 0,3x -2x - - ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2 + e -0,1x -3 x 2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2 + e -0,1x -3 x 2 -2 + - -2 - - e -0,1x -3 x 2 - : ( Der Exponentialterm im Zähler wächst sehr viel schneller gegen ∞ bzw. gegen 0 als der Nenner und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -2 + e -0,1x -3 x 2 -2 + 0 - -2 +0 -2

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = -2 .