Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = 4 x 3 -5 x 2 -5x -4 x 2 - x

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 - x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{0; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4 x 3 -5 x 2 -5x -4 x 2 - x = 4 x 3 -5 x 2 -5x -4 x · ( x -1 )

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 4 x 3 -5 x 2 -5x -4 x · ( x -1 ) -4 "-0" ⋅ (-1) = -4 "+0" -

Für x   x>0   0 + ⇒ f(x)= 4 x 3 -5 x 2 -5x -4 x · ( x -1 ) -4 "+0" ⋅ (-1) = -4 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 4 x 3 -5 x 2 -5x -4 x · ( x -1 ) -10 (+1) ⋅ "-0" = -10 "-0"

Für x   x>1   1 + ⇒ f(x)= 4 x 3 -5 x 2 -5x -4 x · ( x -1 ) -10 (+1) ⋅ "+0" = -10 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

4 x 3 -5 x 2 -5x -4 x 2 - x = x 2 · ( 4x -5 - 5 x - 4 x 2 ) x 2 · ( 1 - 1 x ) = 4x -5 - 5 x - 4 x 2 1 - 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 4 x 3 -5 x 2 -5x -4 x 2 - x = 4x -5 - 5 x - 4 x 2 1 - 1 x -5 +0+0 1 +0 =

Die Funktion besitzt folglich keine waagrechte Asymptote.

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 2 -5 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-5 + x = 0
x -5 = 0 | +5
x = 5

also Definitionsmenge D=R\{ 5 }

Wir untersuchen nun das Verhalten für x → 5 (von links und von rechts)

Für x   x<5   5 - ⇒ f(x)= 2 -5 + x +2 "-0" -

Für x   x>5   5 + ⇒ f(x)= 2 -5 + x +2 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 5 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5 e 3x - e x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

e 3x - e x = 0
( e 2x -1 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x -1 = 0 | +1
e 2x = 1 |ln(⋅)
2x = 0 |:2
x1 = 0 ≈ 0

2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

also Definitionsmenge D=R\{0}

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

5 e 3x - e x = 5 ( e 2x -1 ) · e x

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 5 ( e 2x -1 ) · e x +5 "-0" ⋅ (+1) = +5 "-0" -

Für x   x>0   0 + ⇒ f(x)= 5 ( e 2x -1 ) · e x +5 "+0" ⋅ (+1) = +5 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3x -3 x 2 -1

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 -1 = 0 | +1
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

also Definitionsmenge D=R\{ -1 ; 1 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

3x -3 x 2 -1 = 3x -3 ( x +1 ) ( x -1 )

Wir untersuchen das Verhalten für x → 1 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x -1) erkennen, die wir dann kürzen können:

3x -3 ( x +1 ) ( x -1 ) = 3x -3 ( x +1 ) ( x -1 ) = 3 x +1

Für x → 1 ⇒ f(x)= 3x -3 ( x +1 ) ( x -1 ) = 3 x +1 3 1 +1 = 3 2

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(1 | 3 2 )


Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 3x -3 ( x +1 ) ( x -1 ) -6 "-0" ⋅ (-2) = -6 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= 3x -3 ( x +1 ) ( x -1 ) -6 "+0" ⋅ (-2) = -6 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = 3 und bei x2 = 2 jeweils eine senkrechte Asymptote, bei y = -3 eine waagrechte Asymptote und in N1(4|0) und N2(0|0) Nullstellen besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=3 und x2=2 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x -3 ) · ( x -2 ) = ? x 2 -5x +6

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( ( x -4 ) · ( x +0 ) ) x 2 -5x +6 = ?⋅ ( x 2 -4x ) x 2 -5x +6

Jetzt testen wir x 2 -4x ( x -3 ) · ( x -2 ) auf die waagrechte Asymptote:

Um die waagrechte Asymptote von 1 auf -3 zu bringen multiplizieren wir einfach den Zähler mit -3 und erhalten so:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-3( x 2 -4x ) ( x -3 ) · ( x -2 ) = -3 x 2 +12x x 2 -5x +6

-3 x 2 +12x x 2 -5x +6 = x 2 · ( -3 + 12 x ) x 2 · ( 1 - 5 x + 6 x 2 ) = -3 + 12 x 1 - 5 x + 6 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -3 x 2 +12x x 2 -5x +6 = -3 + 12 x 1 - 5 x + 6 x 2 -3 +0 1 +0+0 = -3 1 = -3

Mit f(x)= -3( x 2 -4x ) ( x -3 ) · ( x -2 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= 2 eine senkrechte Asymptote ohne VZW (beides mal f(x) → +∞), bei y = 3 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=2 (ohne VZW (beides mal f(x) → +∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -2 ) 2 = ? x 2 -4x +4

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( 1 ) x 2 -4x +4

Jetzt testen wir 1 ( x -2 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, brauchen wir im Zähler auch eine quadratische Funktion, die ja aber keine Nullstelle haben darf. (z.B. x²+1). Außerdem muss der Koeffizient vor dem x² in unserem Fall 3 sein, damit die waagrechte Asymptote (nach Ausklammern und Kürzen von x²) =3 wird. Dies funktioniert z.B. mit dem Zähler 3( x 2 +1 )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
3( x 2 +1 ) ( x -2 ) 2 = 3 x 2 +3 x 2 -4x +4

3 x 2 +3 x 2 -4x +4 = x 2 · ( 3 + 3 x 2 ) x 2 · ( 1 - 4 x + 4 x 2 ) = 3 + 3 x 2 1 - 4 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 3 x 2 +3 x 2 -4x +4 = 3 + 3 x 2 1 - 4 x + 4 x 2 3 +0 1 +0+0 = 3 1 = 3

Mit f(x)= 3( x 2 +1 ) ( x -2 ) 2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 1 x -2 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 1 x -2 0 -2 -2

Für x → ∞ ⇒ f(x)= 1 x -2 0 -2 -2

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = -2 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -3 x 2 · e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -3 x 2 · e 0,3x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -3 x 2 · e 0,3x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).