Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -5x -3 ( x +3 ) ( x +2 )

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x +3 ) ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x +3 = 0 | -3
x1 = -3

2. Fall:

x +2 = 0 | -2
x2 = -2

also Definitionsmenge D=R\{ -3 ; -2 }

Wir untersuchen nun das Verhalten für x → -3 (von links und von rechts)

Für x   x<-3   -3 - ⇒ f(x)= -5x -3 ( x +3 ) ( x +2 ) +12 "-0" ⋅ (-1) = +12 "+0"

Für x   x>-3   -3 + ⇒ f(x)= -5x -3 ( x +3 ) ( x +2 ) +12 "+0" ⋅ (-1) = +12 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -3 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → -2 (von links und von rechts)

Für x   x<-2   -2 - ⇒ f(x)= -5x -3 ( x +3 ) ( x +2 ) +7 (+1) ⋅ "-0" = +7 "-0" -

Für x   x>-2   -2 + ⇒ f(x)= -5x -3 ( x +3 ) ( x +2 ) +7 (+1) ⋅ "+0" = +7 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -2 mit einem VZW von - nach +

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-5x -3 ( x +3 ) ( x +2 ) = -5x -3 x 2 +5x +6

-5x -3 x 2 +5x +6 = x 2 · ( - 5 x - 3 x 2 ) x 2 · ( 1 + 5 x + 6 x 2 ) = - 5 x - 3 x 2 1 + 5 x + 6 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -5x -3 x 2 +5x +6 = - 5 x - 3 x 2 1 + 5 x + 6 x 2 0+0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = -2x +5 x -3

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x -3 = 0 | +3
x = 3

also Definitionsmenge D=R\{ 3 }

Wir untersuchen nun das Verhalten für x → 3 (von links und von rechts)

Für x   x<3   3 - ⇒ f(x)= -2x +5 x -3 -1 "-0"

Für x   x>3   3 + ⇒ f(x)= -2x +5 x -3 -1 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 3 mit einem VZW von + nach -

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 5 x 2 - x -3 ( x -1 ) x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

( x -1 ) x = 0
x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

also Definitionsmenge D=R\{0; 1 }

Wir untersuchen nun das Verhalten für x → 0 (von links und von rechts)

Für x   x<0   0 - ⇒ f(x)= 5 x 2 - x -3 ( x -1 ) x -3 (-1) ⋅ "-0" = -3 "+0" -

Für x   x>0   0 + ⇒ f(x)= 5 x 2 - x -3 ( x -1 ) x -3 (-1) ⋅ "+0" = -3 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 0 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 1 (von links und von rechts)

Für x   x<1   1 - ⇒ f(x)= 5 x 2 - x -3 ( x -1 ) x +1 "-0" ⋅ (+1) = +1 "-0" -

Für x   x>1   1 + ⇒ f(x)= 5 x 2 - x -3 ( x -1 ) x +1 "+0" ⋅ (+1) = +1 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 1 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = x 2 +2x -2x -4

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-2x -4 = 0 | +4
-2x = 4 |:(-2 )
x = -2

also Definitionsmenge D=R\{ -2 }

und den Zähler:

x 2 +2x -2x -4 = x · ( x +2 ) -2x -4

Wir untersuchen das Verhalten für x → -2 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +2) erkennen, die wir dann kürzen können:

x 2 +2x -2x -4 = x · ( x +2 ) -2x -4 = - 1 2 x

Für x → -2 ⇒ f(x)= x 2 +2x -2x -4 = - 1 2 x - 1 2 ( -2 ) = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-2 | 1 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x1 = -1 und bei x2 = -4 jeweils eine senkrechte Asymptote, bei y = -1 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptoten bei x1=-1 und x2=-4 müssen die entsprechenden Linearterme in den Nenner unserer gesuchten Funktion, also:

? ( x +1 ) · ( x +4 ) = ? x 2 +5x +4

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( 1 ) x 2 +5x +4

Jetzt testen wir 1 ( x +1 ) · ( x +4 ) auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, brauchen wir im Zähler auch eine quadratische Funktion, die ja aber keine Nullstelle haben darf. (z.B. x²+1). Außerdem muss der Koeffizient vor dem x² in unserem Fall -1 sein, damit die waagrechte Asymptote (nach Ausklammern und Kürzen von x²) =-1 wird. Dies funktioniert z.B. mit dem Zähler -( x 2 +1 )

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-( x 2 +1 ) ( x +1 ) · ( x +4 ) = - x 2 -1 x 2 +5x +4

- x 2 -1 x 2 +5x +4 = x 2 · ( -1 - 1 x 2 ) x 2 · ( 1 + 5 x + 4 x 2 ) = -1 - 1 x 2 1 + 5 x + 4 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= - x 2 -1 x 2 +5x +4 = -1 - 1 x 2 1 + 5 x + 4 x 2 -1 +0 1 +0+0 = -1 1 = -1

Mit f(x)= -( x 2 +1 ) ( x +1 ) · ( x +4 ) sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -1 eine senkrechte Asymptote mit einem VZW von + nach -, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-1 (mit einem VZW von + nach -) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +1

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +1 , passen bereits die Definitionslücke bei x = -1 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +1 = x · 1 x x · ( 1 + 1 x ) = 1 x 1 + 1 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +1 = 1 x 1 + 1 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-1   -1- ⇒ f(x)= 1 x +1 +1 "-0" -

Für x   x>-1   -1+ ⇒ f(x)= 1 x +1 +1 "+0"

Wir haben also den falschen VZW. Wenn wir aber den Zähler mit -1 multiplizieren, bekommen wir gerade das entgegengesetzte Verhalten in der Nähe der Definitionslücke.

Mit f(x)= -1 x +1 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2 x 2 · e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2 x 2 · e 0,3x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= -2 x 2 · e 0,3x - · -

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = 2 x 2 · e 0,3x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= 2 x 2 · e 0,3x · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen und setzt sich deswegen durch)

Für x → ∞ ⇒ f(x)= 2 x 2 · e 0,3x ·

Die Funktion besitzt folglich auf der linken Seite (für x → -∞) eine waagrechte Asymptote bei y = 0 (x-Achse).