Aufgabenbeispiele von Asymptoten

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


alle Asymptoten bestimmen

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) und waagrechten Asymptoten vom Graphen der Funktion f mit f(x) = -2 x 2 - x -2

Lösung einblenden

senkrechte Asymptoten

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

also Definitionsmenge D=R\{ -1 ; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

-2 x 2 - x -2 = -2 ( x -2 ) · ( x +1 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= -2 ( x -2 ) · ( x +1 ) -2 (-3) ⋅ "-0" = -2 "+0" -

Für x   x>-1   -1 + ⇒ f(x)= -2 ( x -2 ) · ( x +1 ) -2 (-3) ⋅ "+0" = -2 "-0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von - nach +

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= -2 ( x -2 ) · ( x +1 ) -2 "-0" ⋅ (+3) = -2 "-0"

Für x   x>2   2 + ⇒ f(x)= -2 ( x -2 ) · ( x +1 ) -2 "+0" ⋅ (+3) = -2 "+0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von + nach -

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

-2 x 2 - x -2 = x 2 · ( - 2 x 2 ) x 2 · ( 1 - 1 x - 2 x 2 ) = - 2 x 2 1 - 1 x - 2 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 - x -2 = - 2 x 2 1 - 1 x - 2 x 2 0 1 +0+0 = 0 1 = 0

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 0 (x-Achse).

senkrechte Asymptote (einfach)

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 3 -2 + x

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

-2 + x = 0
x -2 = 0 | +2
x = 2

also Definitionsmenge D=R\{ 2 }

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 3 -2 + x +3 "-0" -

Für x   x>2   2 + ⇒ f(x)= 3 -2 + x +3 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

senkrechte Asymptoten

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = 4 x 2 - x -2

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x 2 - x -2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -2 ) 21

x1,2 = +1 ± 1 +8 2

x1,2 = +1 ± 9 2

x1 = 1 + 9 2 = 1 +3 2 = 4 2 = 2

x2 = 1 - 9 2 = 1 -3 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

also Definitionsmenge D=R\{ -1 ; 2 }

Um den Term besser auf Asymptoten untersuchen zu können, faktorisieren wir den Nenner:

4 x 2 - x -2 = 4 ( x -2 ) · ( x +1 )

Wir untersuchen nun das Verhalten für x → -1 (von links und von rechts)

Für x   x<-1   -1 - ⇒ f(x)= 4 ( x -2 ) · ( x +1 ) +4 (-3) ⋅ "-0" = +4 "+0"

Für x   x>-1   -1 + ⇒ f(x)= 4 ( x -2 ) · ( x +1 ) +4 (-3) ⋅ "+0" = +4 "-0" -

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= -1 mit einem VZW von + nach -

Wir untersuchen nun das Verhalten für x → 2 (von links und von rechts)

Für x   x<2   2 - ⇒ f(x)= 4 ( x -2 ) · ( x +1 ) +4 "-0" ⋅ (+3) = +4 "-0" -

Für x   x>2   2 + ⇒ f(x)= 4 ( x -2 ) · ( x +1 ) +4 "+0" ⋅ (+3) = +4 "+0"

Die Funktion besitzt folglich eine senkrechte Asymptote bei x= 2 mit einem VZW von - nach +

Polstellen und hebbare Def.-Lücken

Beispiel:

Bestimme alle senkrechten Asymptoten (mit VZW) von der Funktion f mit f(x) = ( x +3 ) ( x +4 ) x +3

Lösung einblenden

Zuerst untersucht man die Funktion auf Definitionslücken, also in unserem Fall, ob der Nenner =0 werden kann.

x +3 = 0 | -3
x = -3

also Definitionsmenge D=R\{ -3 }

Wir untersuchen das Verhalten für x → -3 und erkennen, dass sowohl der Zähler als auch der Nenner =0 werden.

Wir müssten also sowohl im Zähler als auch im Nenner einen Faktor (x +3) erkennen, die wir dann kürzen können:

( x +3 ) ( x +4 ) x +3 = ( x +3 ) ( x +4 ) x +3 = x +4

Für x → -3 ⇒ f(x)= ( x +3 ) ( x +4 ) x +3 = x +4 -3 +4 = 1

Die Funktion besitzt folglich eine hebbare Definitionslücke (Loch) L(-3 | 1 )


Term mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm dessen Graph bei x= 1 eine senkrechte Asymptote ohne VZW (beides mal f(x) → -∞), bei y = -2 eine waagrechte Asymptote und eine Nullstelle in N(4|0) besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=1 (ohne VZW (beides mal f(x) → -∞)) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion. Da kein Vorzeichenwechsel vorliegt, muss es eine doppelte Nullstelle sein, also:

? ( x -1 ) 2 = ? x 2 -2x +1

Nullstellen in den Zähler

Im Zähler müssen auf jeden Fall mal die Nullstellen berücksichtigt werden, also

? ⋅ ( x -4 ) x 2 -2x +1

Jetzt testen wir x -4 ( x -1 ) 2 auf die waagrechte Asymptote:

Da im Nenner eine quadratische Funktion ist, im Zähler auch nur eine lineare Funktion, muss die Funktion für x → ∞ gegen 0 laufen. Um diesen Grenzwert aber auf -2 zu bringen, quadrieren wir einfach den Linearterm des Zählers und geben im als Koeffizient -2. Jetzt stimmt auch die waagrechte Asympzote:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

Vorher sollte man allerdings noch ausmultiplizien.
-2 ( x -4 ) 2 ( x -1 ) 2 = -2 x 2 +16x -32 x 2 -2x +1

-2 x 2 +16x -32 x 2 -2x +1 = x 2 · ( -2 + 16 x - 32 x 2 ) x 2 · ( 1 - 2 x + 1 x 2 ) = -2 + 16 x - 32 x 2 1 - 2 x + 1 x 2

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= -2 x 2 +16x -32 x 2 -2x +1 = -2 + 16 x - 32 x 2 1 - 2 x + 1 x 2 -2 +0+0 1 +0+0 = -2 1 = -2

Mit f(x)= -2 ( x -4 ) 2 ( x -1 ) 2 sind also alle Bedingungen erfüllt

Bruchterm mit Asymptoten bestimmen

Beispiel:

Bestimme einen Funktionsterm (als Bruchterm) dessen Graph bei x= -2 eine senkrechte Asymptote mit einem VZW von - nach +, bei y = 0 eine waagrechte Asymptote und keine Nullstelle besitzt.

Lösung einblenden

Zuerst der Nenner

Aufgrund der senkrechten Asymptote bei x=-2 (mit einem VZW von - nach +) muss der entsprechende Linearterm in den Nenner unserer gesuchten Funktion, also:

? x +2

Wenn wir den Zähler auf 1 setzen, also f(x)= 1 x +2 , passen bereits die Definitionslücke bei x = -2 und die fehlenden Nullstellen. Auch die waagrechte Asymptote bei y=0 passt:

waagrechte Asymptoten

Um die waagrechte Asymtote zu ermitteln, wird in Zähler und Nenner die höchste x-Potenz des Nenners ausgeklammert:

1 x +2 = x · 1 x x · ( 1 + 2 x ) = 1 x 1 + 2 x

So können wir einfach das Verhalten für x→ ±∞ untersuchen:

Für x → ±∞ ⇒ f(x)= 1 x +2 = 1 x 1 + 2 x 0 1 +0 = 0 1 = 0

Vorzeichenwechsel (VZW)

Für x   x<-2   -2- ⇒ f(x)= 1 x +2 +1 "-0" -

Für x   x>-2   -2+ ⇒ f(x)= 1 x +2 +1 "+0"

Mit f(x)= 1 x +2 sind also alle Bedingungen erfüllt

waagrechte Asymptoten

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = - 3 x +4 für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= - 3 x +4 0 +4 4

Für x → ∞ ⇒ f(x)= - 3 x +4 0 +4 4

Die Funktion besitzt folglich eine waagrechte Asymptote bei y = 4 .

e-Fkt'n Verhalten → ∞

Beispiel:

Bestimme das Verhalten der Funktion f mit f(x) = -2 x 2 · e -0,4x für x → -∞ und für x → ∞.

Lösung einblenden

Für x → -∞ ⇒ f(x)= -2 x 2 · e -0,4x - · -

Für x → ∞ ⇒ f(x)= -2 x 2 · e -0,4x - · 0 0( Der Exponentialterm im zweiten Faktor wächst sehr viel schneller gegen 0 als der erste Faktor gegen - und setzt sich deswegen durch)

Die Funktion besitzt folglich auf der rechten Seite (für x → ∞) eine waagrechte Asymptote bei y = 0 (x-Achse).