Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
HP, TP oder WP bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=2 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|2).
Mit Hilfe von b=2 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
≈
. .
Weil das gesuchte Interval [0; ) zwei Perioden umfasst, ist auch noch = eine Lösung.
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=3) über 2, also bei y=5.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |5) und einen bei ( |5)
HP, TP oder WP bei trigon. Fktn. BF
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=0 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|0).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=sin(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem steigender Wendepunkt in P ein fallender Wendepunkt in P(0|0) wird.
Mit Hilfe von b=2 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei sin(x) nach Dreiviertel der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
aber nach einem Viertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=0 um y=0. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter 0, also bei y=-1.
Wir erhalten also als Ergebnis einen Tiefpunkt bei ( |-1)
HP, TP oder WP bei trigon. Fktn (LF)
Beispiel:
Bestimme die Tiefpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=-1 in y-Richtung und um c= nach rechts verschoben ist.
Der erste Hochpunkt wäre also im Punkt P( |0).
Weil aber das Vorzeichen von a = -1 aber negativ ist, wird die Original-funktion f(x)=cos(x) nicht nur um den Faktor 1 gestreckt sondern auch an der x-Achse gespiegelt, so dass aus dem Hochpunkt in P ein Tiefpunkt in P( |-2) wird.
Mit Hilfe von b=3 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Tiefpunkt ist bei cos(x) nach der Hälfte der Periode, bei der durch das negative Vorzeichen an der x-Achse gespiegelte Funktion
aber zu Beginn der Periode,
also bei x1=
+
≈
.
Weil diese Stelle aber negativ ist, müssen wir noch (mindestens) eine Periode dazu addieren,
damit der x-Wert im gesuchten Intervall [0;
) liegt,
also x1=
≈
.
Weil das gesuchte Interval [0; ) zwei Perioden umfasst, ist auch noch = eine Lösung.
Die Funktion schwingt wegen d=-1 um y=-1. Der y-Wert des Tiefpunkt ist also eine Amplitude (a=1) unter -1, also bei y=-2.
Wir erhalten also als Ergebnis einen Tiefpunkt bei ( |-2) und bei ( |-2)
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit innerhalb einer Periode, also im Intervall [0; [.
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
| = | |sin-1(⋅) |
Der WTR liefert nun als Wert 0.41151684606749
1. Fall:
| = | |: | ||
| x1 | = |
Am Einheitskreis erkennen wir, dass die Gleichung = noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.4 schneidet den Einheitskreis in einem zweiten Punkt).
Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - = liegen muss.
2. Fall:
| = | |: | ||
| x2 | = |
L={ ; }
Die Nullstellen in der Periode [0;
) sind also
bei x1 =
und x2 =
.
trigon. Anwendungsaufgabe 2
Beispiel:
Bei einem Riesenrad kann man die Höhe einer Gondel (in m) über dem Erdboden zur Zeit t (in Sekunden) näherungsweise durch die Funktion f mit (0 < t ≤ 160) angeben.
- Bestimme die Zeit (in s), die eine Gondel für eine Umdrehung braucht.
- Wie hoch ist die Gondel an ihrem tiefsten Punkt über dem Erdboden?
- Wie lange (in Sekunden) hat das Riesenrad eine Höhe von mindestens 14,6 m?
- Zu welcher Zeit (in s) ist die Gondel am höchsten?
- Periodenlänge
Aus dem Funktionsterm können wir den Faktor b = herauslesen und in die Periodenformel einsetzen:
Somit gilt für die Periodenlänge: p = = = 160
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 11 nach oben und eine Amplitude von a = 9 erkennen, d.h. f schwingt um maximal 9 um 11. Somit ist der tiefste Wert bei 11 m - 9 m = 2 m.
- t-Werte mit f(t) ≥ 14.6
Um das gesuchte Intervall zu bestimmen, müssen wir erst die Stellen bestimmen, an denen der Funktionswert unserer Sinus-Funktion gerade den Wert 14.6 hat. Wir setzen also den Funktionsterm mit 14.6 gleich:
= 14.69 ⋅ sin ( 1 80 π ( t - 20 ) ) + 11 9 ⋅ sin ( 0,0393 t - 0,7854 ) + 11 = 14,6 | - 11 9 ⋅ sin ( 0,0393 t - 0,7854 ) = 3,6 |: 9 sin ( 0,0393 t - 0,7854 ) = 0,4 |sin-1(⋅) Der WTR liefert nun als Wert 0.41151684606749
1. Fall:
0,0393 x - 0,7854 = 0,412 | + 0,7854 0,0393 x = 1,1974 |: 0,0393 x1 = 30,4682 Am Einheitskreis erkennen wir, dass die Gleichung
=sin ( 0,0393 t - 0,7854 ) noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.4 schneidet den Einheitskreis in einem zweiten Punkt).0,4 Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π -
=0,412 liegen muss.2,73 2. Fall:
0,0393 x - 0,7854 = 2,73 | + 0,7854 0,0393 x = 3,5154 |: 0,0393 x2 = 89,4504 Da die Sinus-Funktion ja um 20 nach rechts verschoben ist, startet sie nach 20 s nach oben und erreicht erstmals nach 30.47 s den Wert 14.6. Danach steigt sie weiter bis zum Hochpunkt und sinkt dann wieder bis sie nach 89.45 s zum zweiten mal den Wert 14.6 erreicht. Während dieser 89.45 - 30.47 = 58.98 s ist der Wert der Funktion also höher als 14.6.
- t-Wert des Maximums (HP)
Gesucht ist die Stelle mit dem höchsten Funktionswert, also der x- bzw- t-Wert des Hochpunkts. Dieser ist bei einer Sinusfunktion immer nach einer Viertel Periode (im Einheitskreis ist man nach einer Viertel-Umdrehung ganz oben bei y=1), hier also nach 40 s.
Die Sinusfunktion ist aber auch noch um 20 nach rechts verschoben, d.h. sie startet auch erst bei t = 20 s mit ihrer Periode. Somit erreicht sie ihren Hochpunkt nach 40 + 20 s = 60 s. Die Lösung ist also: 60 s.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Kosiniusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von
