Aufgabenbeispiele von Trigonometrie
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ableiten von trigonometrischen Funktionen BF
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Ableiten von trigonometrischen Funktionen
Beispiel:
Berechne die Ableitung von f mit und vereinfache:
Extrempunkte bei trigon. Fktn. BF (einfach)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-3 in y-Richtung verschoben ist.
Der erste steigender Wendepunkt wäre also im Punkt P(0|-3).
Mit Hilfe von b=3 und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
≈
. .
Die Funktion schwingt wegen d=-3 um y=-3. Der y-Wert des Hochpunkt ist also eine Amplitude (a=2) über -3, also bei y=-1.
Wir erhalten also als Ergebnis einen Hochpunkt bei ( |-1)
Extrempunkte bei trigon. Fktn. BF
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit im Intervall [0; ).
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=cos(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=cos(x) um d=2 in y-Richtung verschoben ist.
Der erste Hochpunkt wäre also im Punkt P(0|2).
Mit Hilfe von b= und der Periodenformel p= erhalten wir als Periode:
p= =
Der gesuchte Hochpunkt ist bei cos(x) zu Beginn der Periode,
also bei x1=
Die Funktion schwingt wegen d=2 um y=2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über 2, also bei y=3.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Extrempunkte bei trigon. Fktn (LF)
Beispiel:
Bestimme die Hochpunkte des Graphen von f mit
(Tipp: am schnellsten geht das ohne Ableitungen)
Die Originalfunktion f(x)=sin(x) ist in der Abbildung rechts in blau eingezeichnet.
Wir erkennen relativ gut am Term, dass der Graph von f gegenüber dem von g(x)=sin(x) um d=-2 in
y-Richtung und um c=
Der erste steigender Wendepunkt wäre also im Punkt P(
Mit Hilfe von b=1 und der Periodenformel p=
p=
Der gesuchte Hochpunkt ist bei sin(x) nach einem Viertel der Periode,
also bei x1=
Die Funktion schwingt wegen d=-2 um y=-2. Der y-Wert des Hochpunkt ist also eine Amplitude (a=1) über -2, also bei y=-1.
Wir erhalten also als Ergebnis einen Hochpunkt bei (
Nullstellen mit dem WTR
Beispiel:
Bestimme mit Hilfe eines Taschenrechners alle Nullstellen der Funktion f mit
Um die Nullstellen zu erhalten, setzen wir einfach f(x)=0.
Daraus ergibt sich folgende Gleichung:
|
= | |cos-1(⋅) |
Am Einheitskreis erkennt man sofort:
1. Fall:
|
= |
|
|⋅ 4 |
x1 | = |
|
Am Einheitskreis erkennen wir, dass die Gleichung
Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt)
bei -
bzw. bei -
2. Fall:
|
= |
|
|⋅ 4 |
x2 | = |
|
L={
Die Nullstellen in der Periode [0;
bei x1 =
trigon. Anwendungsaufgabe 2
Beispiel:
An einem bestimmten Ort kann die Zeit (in h) zwischen Sonnenaufgang und Sonnenuntergang t Tage nach Beobachtungsbeginn näherungsweise durch die Funktion f mit
- Bestimme die kürzeste Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h)
- Bestimme die maximale Zeit zwischen Sonnenaufgang und Sonnenuntergang (in h).
Aus dem Funktionsterm können wir den Faktor b =
Somit gilt für die Periodenlänge: p =
- y-Wert des Minimums (TP)
Gesucht ist der tiefste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 4.5 erkennen, d.h. f schwingt um maximal 4.5 um 12. Somit ist der tiefste Wert bei 12 h - 4.5 h = 7.5 h.
- y-Wert des Maximums (HP)
Gesucht ist der höchste Funktionswert. Aus dem Term kann man eine Verschiebung der Sinusfunktion um d = 12 nach oben und eine Amplitude von a = 4.5 erkennen, d.h. f schwingt um maximal 4.5 um 12. Somit ist der höchste Wert bei 12 h + 4.5 h = 16.5 h.
Parameter für best. Periode finden
Beispiel:
Für welchen Wert von a hat der Graph fa mit
Der Graph einer normalen Sinusfunktion hat ja seinen ersten Tiefpunkt immmer nach einer
Demnach muss also die Periode p =
Jetzt können wir die Periodenformel p =
b =
Da bei
damit der Graph von