Aufgabenbeispiele von Linearfaktordarstellung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(2|0).

Also muss der Funktionsterm f(x)= a · ( x +2 ) · ( x -2 ) sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= ( x +2 ) ( x -2 ) .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +2x .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir können einfach x ausklammern und erhalten so f(x)= ( x +2 ) x .

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(3|0).

Also muss der Funktionsterm f(x)= a · ( x +2 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|2).
Es gilt dann ja: f(-1) = 2,
also f(-1) = a · ( -1 +2 ) · ( -1 -3 ) = -4a =2.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - 1 2 ( x +2 ) ( x -3 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form f(x) = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm f(x)= a · ( x -1 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(2|1).
Es gilt dann ja: f(2) = 1,
also f(2) = a · ( 2 -1 ) · ( 2 -4 ) = -2a =1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - 1 2 ( x -1 ) ( x -4 ) .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

f(x)= - 1 2 ( x -1 ) ( x -4 )

= - 1 2 ( x · x + x · ( -4 ) -1 · x -1 · ( -4 ))

= - 1 2 ( x · x -4x - x +4 )

= - 1 2 ( x 2 -5x +4 )

= - 1 2 x 2 + 5 2 x -2

Der gesuchte Funktionsterm in der Form f(x) = ax² + bx + c ist somit f(x)= - 1 2 x 2 + 5 2 x -2

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 +4x +6 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

-2 x 2 +4x +6 = 0 |:2

- x 2 +2x +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · ( -1 ) · 3 2( -1 )

x1,2 = -2 ± 4 +12 -2

x1,2 = -2 ± 16 -2

x1 = -2 + 16 -2 = -2 +4 -2 = 2 -2 = -1

x2 = -2 - 16 -2 = -2 -4 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +2x +3 = 0 |: -1

x 2 -2x -3 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Für jedes a hat also der Funktionterm a · ( x +1 ) · ( x -3 ) genau die gleichen Nullstellen wie f(x)= -2 x 2 +4x +6 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

f(x)= a · ( x +1 ) · ( x -3 )

= a · ( x · x + x · ( -3 ) + 1 · x + 1 · ( -3 ) )

= a · ( x · x -3x + x -3 )

= a · ( x 2 -2x -3 )

Für a = -2 ergibt sich also tatsächlich:

-2( x 2 -2x -3 ) = -2 x 2 +4x +6 = f(x)

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: f(x)= -2 ( x +1 ) ( x -3 )