Aufgabenbeispiele von Linearfaktordarstellung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Linearfaktordarst. am Graph (|a|=1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine verschobene Normalparabel. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Wir lesen einfach die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(0|0).

Also muss der Funktionsterm f(x)= a · ( x +4 ) · x sein.

Weil es sich ja aber um eine Normalparabel handelt, kann dieses a nur 1 oder -1 sein.

Die Parabel ist nach oben geöffnet, also muss a = 1 sein.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= ( x +4 ) x .

Linearfaktordarst. aus Term (|a|=1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +2x -3 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

Der Funktionterm ( x +3 ) ( x -1 ) hat nun also genau die gleichen Nullstellen wie f(x)= x 2 +2x -3 und beide Terme haben a=1 als Koeffizient vor dem x² (Normalparabeln).

Also ist f(x)= ( x +3 ) ( x -1 ) bereits der gesuchte Term.

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(2|0).

Also muss der Funktionsterm f(x)= a · ( x +1 ) · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-1).
Es gilt dann ja: f(-2) = -1,
also f(-2) = a · ( -2 +1 ) · ( -2 -2 ) = 4a =-1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - 1 4 ( x +1 ) ( x -2 ) .

Linearfakt. am Graph (a≠1) + Ausmultipl.

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist das Schaubild einer Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in der Form f(x) = ax² + bx + c an.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm f(x)= a · ( x +2 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|1).
Es gilt dann ja: f(-1) = 1,
also f(-1) = a · ( -1 +2 ) · ( -1 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit f(x)= - ( x +2 ) x .

Jetzt muss der faktorisierte Term eben noch ausmultipliziert werden:

f(x)= - ( x +2 ) x

= -( x · x + 2 · x )

= -( x · x +2x )

= -( x 2 +2x )

= - x 2 -2x

Der gesuchte Funktionsterm in der Form f(x) = ax² + bx + c ist somit f(x)= - x 2 -2x

Linearfakt. aus Term (a≠1)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -12x +10 .
Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Für die faktorisierte Darstellung brauchen wir die Nullstellen. Also berechnen wir diese als erstes.

2 x 2 -12x +10 = 0 |:2

x 2 -6x +5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 1 · 5 21

x1,2 = +6 ± 36 -20 2

x1,2 = +6 ± 16 2

x1 = 6 + 16 2 = 6 +4 2 = 10 2 = 5

x2 = 6 - 16 2 = 6 -4 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -3 ) 2 - 5 = 9 - 5 = 4

x1,2 = 3 ± 4

x1 = 3 - 2 = 1

x2 = 3 + 2 = 5

Für jedes a hat also der Funktionterm a · ( x -1 ) · ( x -5 ) genau die gleichen Nullstellen wie f(x)= 2 x 2 -12x +10 .

Wenn wir nun ausmultiplizieren, erkennenn wir, dass a genau der Koeffizient vor den x² bei unserer Originalfunktion sein muss:

f(x)= a · ( x -1 ) · ( x -5 )

= a · ( x · x + x · ( -5 ) -1 · x -1 · ( -5 ) )

= a · ( x · x -5x - x +5 )

= a · ( x 2 -6x +5 )

Für a = 2 ergibt sich also tatsächlich:

2( x 2 -6x +5 ) = 2 x 2 -12x +10 = f(x)

Der gesuchte Funktionsterm in faktorisierter Darstellung ist also: f(x)= 2 ( x -1 ) ( x -5 )