Aufgabenbeispiele von Wurzelgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

2 ( -x ) = 2

Lösung einblenden
2 ( -x ) = 2 |:2
( -x ) = 1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-x = 1 2
-x = 1 |:(-1 )
x = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 2 ( -x )

= 2 ( -( -1 ) )

= 2 1

= 2

Rechte Seite:

x = -1 in 2

= 2

Also 2 = 2

x = -1 ist somit eine Lösung !

L={ -1 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-7x -12 = x

Lösung einblenden
-7x -12 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-7x -12 = ( x ) 2
-7x -12 = x 2 | - x 2

- x 2 -7x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · ( -1 ) · ( -12 ) 2( -1 )

x1,2 = +7 ± 49 -48 -2

x1,2 = +7 ± 1 -2

x1 = 7 + 1 -2 = 7 +1 -2 = 8 -2 = -4

x2 = 7 - 1 -2 = 7 -1 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -7x -12 = 0 |: -1

x 2 +7x +12 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - 12 = 49 4 - 12 = 49 4 - 48 4 = 1 4

x1,2 = - 7 2 ± 1 4

x1 = - 7 2 - 1 2 = - 8 2 = -4

x2 = - 7 2 + 1 2 = - 6 2 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -7x -12

= -7( -4 ) -12

= 28 -12

= 16

= 4

Rechte Seite:

x = -4 in x

= -4

Also 4 ≠ -4

x = -4 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -7x -12

= -7( -3 ) -12

= 21 -12

= 9

= 3

Rechte Seite:

x = -3 in x

= -3

Also 3 ≠ -3

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (rechts linear)

Beispiel:

Löse die folgende Gleichung:

-6x -14 -1 = x

Lösung einblenden
-6x -14 -1 = x | +1
-6x -14 = x +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-6x -14 = ( x +1 ) 2
-6x -14 = x 2 +2x +1 | - x 2 -2x -1

- x 2 -8x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +8 ± ( -8 ) 2 -4 · ( -1 ) · ( -15 ) 2( -1 )

x1,2 = +8 ± 64 -60 -2

x1,2 = +8 ± 4 -2

x1 = 8 + 4 -2 = 8 +2 -2 = 10 -2 = -5

x2 = 8 - 4 -2 = 8 -2 -2 = 6 -2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -8x -15 = 0 |: -1

x 2 +8x +15 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 15 = 16 - 15 = 1

x1,2 = -4 ± 1

x1 = -4 - 1 = -5

x2 = -4 + 1 = -3

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -5

Linke Seite:

x = -5 in -6x -14 -1

= -6( -5 ) -14 -1

= 30 -14 -1

= 16 -1

= 4 -1

= 3

Rechte Seite:

x = -5 in x

= -5

Also 3 ≠ -5

x = -5 ist somit keine Lösung !

Probe für x = -3

Linke Seite:

x = -3 in -6x -14 -1

= -6( -3 ) -14 -1

= 18 -14 -1

= 4 -1

= 2 -1

= 1

Rechte Seite:

x = -3 in x

= -3

Also 1 ≠ -3

x = -3 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 1x quadr.)

Beispiel:

Löse die folgende Gleichung:

3x -5 = 2 x -3

Lösung einblenden
3x -5 = 2 x -3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x -5 = ( 2 x -3 ) 2
3x -5 = 4( x -3 )
3x -5 = 4x -12 | +5
3x = 4x -7 | -4x
-x = -7 |:(-1 )
x = 7

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 7

Linke Seite:

x = 7 in 3x -5

= 37 -5

= 21 -5

= 16

= 4

Rechte Seite:

x = 7 in 2 x -3

= 2 7 -3

= 2 4

= 4

Also 4 = 4

x = 7 ist somit eine Lösung !

L={ 7 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

9x = 5x -4 +2

Lösung einblenden
9x = 5x -4 +2
3 x = 5x -4 +2 |:3
x = 1 3 5x -4 + 2 3 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x = ( 1 3 5x -4 + 2 3 ) 2
x = 4 9 5x -4 + 5 9 x |⋅ 9
9x = 9( 4 9 5x -4 + 5 9 x )
9x = 4 5x -4 +5x | -9x -4 5x -4
-4 5x -4 = -4x |:(-4 )
5x -4 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
5x -4 = ( x ) 2
5x -4 = x 2 | - x 2

- x 2 +5x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = -5 ± 25 -16 -2

x1,2 = -5 ± 9 -2

x1 = -5 + 9 -2 = -5 +3 -2 = -2 -2 = 1

x2 = -5 - 9 -2 = -5 -3 -2 = -8 -2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 +5x -4 = 0 |: -1

x 2 -5x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = 5 2 ± 9 4

x1 = 5 2 - 3 2 = 2 2 = 1

x2 = 5 2 + 3 2 = 8 2 = 4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = 1

Linke Seite:

x = 1 in 3 x

= 3 1

= 3

Rechte Seite:

x = 1 in 5x -4 +2

= 51 -4 +2

= 5 -4 +2

= 1 +2

= 1 +2

= 3

Also 3 = 3

x = 1 ist somit eine Lösung !

Probe für x = 4

Linke Seite:

x = 4 in 3 x

= 3 4

= 6

Rechte Seite:

x = 4 in 5x -4 +2

= 54 -4 +2

= 20 -4 +2

= 16 +2

= 4 +2

= 6

Also 6 = 6

x = 4 ist somit eine Lösung !

L={ 1 ; 4 }