Aufgabenbeispiele von Grundrechenarten
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Addition (Kopfrechnen)
Beispiel:
Berechne die Summe (im Kopf): 341 + 35
341 + 35 = 376
Addition (schriftlich)
Beispiel:
Berechne die Summe schriftlich: 28413 + 102 + 36726 + 25493 + 74641
28413 + 102 + 36726 + 25493 + 74641 = 165375
Schriftliche Rechnung:
2 | 8 | 4 | 1 | 3 | |
+ | 1 | 0 | 2 | ||
+ | 3 | 6 | 7 | 2 | 6 |
+ | 2 | 5 | 4 | 9 | 3 |
+ | 7 | 4 | 6 | 4 | 1 |
1 | 2 | 2 | 1 | 1 | |
1 | 6 | 5 | 3 | 7 | 5 |
Subtraktion (Kopfrechnen)
Beispiel:
Berechne die Differenz (im Kopf): 551 - 517
551 - 517 = 34
Subtraktion (schriftlich)
Beispiel:
Berechne die Differenz schriftlich: 35318 - 34586
35318 - 34586 = 732
Schriftliche Rechnung:
3 | 5 | 3 | 1 | 8 | |
- | 3 | 4 | 5 | 8 | 6 |
1 | 1 | ||||
7 | 3 | 2 |
Multiplikation (Kopfrechnen)
Beispiel:
Berechne das Produkt (im Kopf): 6 ⋅ 16
6 ⋅ 16 = 96
Multiplikation (schriftlich)
Beispiel:
Berechne das Produkt (schriftlich oder im Kopf): 651 ⋅ 800
651 ⋅ 800 = 520800
Schriftliche Rechnung:
6 | 5 | 1 | ⋅ | 8 | 0 | 0 | ||
5 | 2 | 0 | 8 | |||||
0 | ||||||||
0 | ||||||||
5 | 2 | 0 | 8 | 0 | 0 |
Division (Kopfrechnen)
Beispiel:
Berechne den Quotienten im Kopf: 19 : 19
19 : 19 = 1
Division (schriftlich)
Beispiel:
Berechne den Quotienten (schriftlich oder im Kopf): 1908 : 9
1908 : 9 = 212
Schriftliche Rechnung:
1 | 9 | 0 | 8 | : | 9 | = | 2 | 1 | 2 | ||
- | 1 | 8 | |||||||||
1 | 0 | ||||||||||
- | 9 | ||||||||||
1 | 8 | ||||||||||
- | 1 | 8 | |||||||||
0 |
Min bzw. Max einer Summe
Beispiel:
Verteile die sechs Ziffern 6, 8, 5, 7, 9, 4 auf zwei dreistellige Zahlen so, dass ihre Summe am größten wird.
Berechne dann diese Summe.
Wir sortieren zuerst die Ziffern in absteigender Reihenfolge:
9, 8, 7, 6, 5, 4
Die beide dreistelligen Zahlen haben je eine Ziffer an der Einer-, an der Zehner- und an der Hunderter-Stelle. Um nun eine möglichst große Summe daraus zu bekommen, müssen an den beiden Hunderter-Stellen die beiden größten Ziffern und an der Einer-Stelle die beiden kleinsten Ziffern stehen.
Ob eine Ziffer im ersten oder im zweiten Summand ist, spielt dabei keine Rolle. Wichtig ist nur die Stelle innerhalb der dreistelligen Zahl.
Wir verteilen also die Ziffern in absteigender Reihenfolge abwechselnd auf die beiden Summanden und erhalten so z.B.
975 + 864 = 1839
Kästchenaufgabe (Rückwärts rechnen)
Beispiel:
Was muss in das Kästchen?
⬜ ⋅
⬜ ⋅
Wenn man das Kästchen mit 11 multipliziert, erhält man 33. Also muss man doch das Kästchen erhalten, wenn man 33 durch 11 dividiert.
Somit gilt:
⬜ = 33 : 11 = 3
Das Kästchen muss also 3 sein, denn es gilt:
3 ⋅
Rückwärtsrechnen verbal
Beispiel:
Wie viel muss man von 54 subtrahieren, um 46 zu erhalten?
"Wie viel muss man von 54 subtrahieren, um 46 zu erhalten?" bedeutet ja:
54 - ⬜ = 46
Wenn man von 54 das Kästchen subtrahiert, erhält man 46. Also muss doch das Kästchen gerade der Unterschied zwischen 54 und 46 sein.
Somit gilt:
⬜ = 54 - 46 = 8
Das Kästchen muss also 8 sein, denn es gilt:
54 -
Anwendungen
Beispiel:
Gertrude möchte einen Kindergeburtstag auf der Bowlingbahn mit richtig vielen Gästen feiern. Dazu möchte sie 6 Mädchen und 2 Jungs aus ihrer Klasse einladen. Außerdem stehen noch 2 Kinder aus dem Sportverein und 1 von der Jugenkapelle des Musikvereins auf der Gästeliste. Nach dem Bowling soll dann ihr Vater alle Kinder zu ihr nach Hause fahren. Wie oft müsste ihr Vater fahren, wenn er immer 4 Kinder im Auto mitnehmen kann?
Wir berechnen erst die Summe aus der Aufgabe:
1 + 6 + 2 + 2 + 1
= 12
Jetzt muss diese Summe noch durch 4 geteilt werden: 12 : 4 = 3
Die Anzahl der Fahrten des Vaters ist also 3