Aufgabenbeispiele von Ketten- und Produktregel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 4 ( 3x -2 ) 3 und vereinfache:

Lösung einblenden

f(x)= 3 4 ( 3x -2 ) 3

f'(x)= 9 4 ( 3x -2 ) 2 · ( 3 +0 )

= 9 4 ( 3x -2 ) 2 · ( 3 )

= 27 4 ( 3x -2 ) 2

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 -x -1 und vereinfache:

Lösung einblenden

f(x)= 3 -x -1

= 3 ( -x -1 ) 1 2

=> f'(x) = 3 2 ( -x -1 ) - 1 2 · ( -1 +0 )

f'(x)= 3 2 -x -1 · ( -1 +0 )

= 3 2 -x -1 · ( -1 )

= - 3 2 -x -1

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 2 ( sin( x ) +3 ) 2 und vereinfache:

Lösung einblenden

f(x)= 2 ( sin( x ) +3 ) 2

f'(x)= 4( sin( x ) +3 ) · ( cos( x ) +0 )

= 4( sin( x ) +3 ) · ( cos( x ) )

= 4 ( sin( x ) +3 ) · cos( x )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(-2).

Lösung einblenden

Wir können der Zeichnung rechts f(-2) = 1 entnehmen.

Also gilt h(-2) = g(f(-2)) = g(1)

g(1) können wir auch wieder am (blauen) Graph ablesen:
h(-2) = g(f(-2)) = g(1) = 1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-2|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(-2)
Wegen -1 = h(x)= g(f(x))= g(-2) gilt also f(x) = -2.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-2 sind.

Diese erkennen wir bei Q1(0|-2) und Q2(2|-2), also bei
x1 = 0 und x2 = 2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(1) = 2 entnehmen.

Wir suchen also f(f '(1)) = f(2).

f(2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(1)) = f(2) = 2 .

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(0|1), der auf dem Graph von g liegt, also gilt:
1 = g(0)
Wegen 1 = h(x)= g(f(x))= g(0) gilt also f(x) = 0.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =0 sind.

Diese erkennen wir bei Q1(0|0) und Q2(-2|0), also bei
x1 = 0 und x2 = -2

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= 1 x 2 · sin( x ) und vereinfache:

Lösung einblenden

f(x)= 1 x 2 · sin( x )

= x -2 · sin( x )

=> f'(x) = -2 x -3 · sin( x ) + x -2 · cos( x )

f'(x)= - 2 x 3 · sin( x ) + 1 x 2 · cos( x )

= -2 sin( x ) x 3 + cos( x ) x 2

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( x ) · ( 4x +2 ) 4 und vereinfache:

Lösung einblenden

f(x)= cos( x ) · ( 4x +2 ) 4

f'(x)= - sin( x ) · ( 4x +2 ) 4 + cos( x ) · 4 ( 4x +2 ) 3 · ( 4 +0 )

= - sin( x ) ( 4x +2 ) 4 + cos( x ) · 4 ( 4x +2 ) 3 · ( 4 )

= - sin( x ) ( 4x +2 ) 4 + cos( x ) · 16 ( 4x +2 ) 3

= - sin( x ) ( 4x +2 ) 4 +16 cos( x ) ( 4x +2 ) 3

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 3x -9 ) · sin( x 3 ) und vereinfache:

Lösung einblenden

f(x)= ( 3x -9 ) · sin( x 3 )

f'(x)= ( 3 +0 ) · sin( x 3 ) + ( 3x -9 ) · cos( x 3 ) · 3 x 2

= 3 sin( x 3 ) + ( 3x -9 ) · 3 cos( x 3 ) x 2

= 3 sin( x 3 ) +3 ( 3x -9 ) cos( x 3 ) x 2

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -3 ) 2 und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -3 ) 2 = 0 | 2
x -3 = 0
x -3 = 0 | +3
x = 3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(3)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 3 gilt, denn dann gilt ja f(g(x)) = f( 3) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 3 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 3, dass dies gerade 1 Schnittpunkts sind.

Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( 3) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -4x -5
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -4 )⋅g(x) + ( x 2 -4x -5 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = 0 und bei x = 4 sind.
Der Extrempunkt des Graphs liegt bei x = 2, (also gilt g '(2) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -4x -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

x1,2 = +4 ± 16 +20 2

x1,2 = +4 ± 36 2

x1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

x2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -5 ) = 4+ 5 = 9

x1,2 = 2 ± 9

x1 = 2 - 3 = -1

x2 = 2 + 3 = 5

Für die Ableitung von f mit f(x)= x 2 -4x -5 gilt: f'(x)= 2x -4 . Diese setzen wir = 0:

2x -4 = 0 | +4
2x = 4 |:2
x = 2

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 2, wodurch mit f'(2)=0 und g'(2)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(2) = f'(2)⋅g(2) + f(2)⋅g'(2) = 0⋅g(2) + f(2)⋅0 = 0.

Damit hat h an der Stelle x = 2 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -3
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -3 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell die Nullstellen von g bei x = -3, bei x = 3 und bei x = 0.
(also gilt g(-3) = g(-3) = g(-3) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Wir haben also sowohl bei f als auch bei g eine eine Nullstelle bei x = 3, wodurch in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(3) = f'(3)⋅g(3) + f(3)⋅g'(3) = f'(3)⋅0 + 0⋅g'(3) = 0.

Damit hat h an der Stelle x = 3 eine waagrechte Tangente.