Aufgabenbeispiele von Ketten- und Produktregel

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -2 ( 2x +1 ) 2 und vereinfache:

Lösung einblenden

f(x)= -2 ( 2x +1 ) 2

f'(x)= -4( 2x +1 ) · ( 2 +0 )

= -4( 2x +1 ) · ( 2 )

= -8( 2x +1 )

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 4 cos( -2x -5 ) und vereinfache:

Lösung einblenden

f(x)= 3 4 cos( -2x -5 )

f'(x)= - 3 4 sin( -2x -5 ) · ( -2 +0 )

= - 3 4 sin( -2x -5 ) · ( -2 )

= 3 2 sin( -2x -5 )

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( cos( x ) -2 ) 3 und vereinfache:

Lösung einblenden

f(x)= ( cos( x ) -2 ) 3

f'(x)= 3 ( cos( x ) -2 ) 2 · ( - sin( x ) +0 )

= 3 ( cos( x ) -2 ) 2 · ( - sin( x ) )

= -3 ( cos( x ) -2 ) 2 · sin( x )

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = 0 entnehmen.

Also gilt h(0) = g(f(0)) = g(0)

g(0) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(0) = 4.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = 3 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = 3 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|3), der auf dem Graph von g liegt, also gilt:
3 = g(3)
Wegen 3 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(2|3) und Q2(-2|3), also bei
x1 = 2 und x2 = -2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-3)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-3) = -2 entnehmen.

Wir suchen also f(f '(-3)) = f(-2).

f(-2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-3)) = f(-2) = - 5 2 .

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = -3 entnehmen.

Also gilt h(0) = g(f(0)) = g(-3)

g(-3) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(-3) = 4.

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( x ) · sin( x ) und vereinfache:

Lösung einblenden

f(x)= cos( x ) · sin( x )

f'(x)= - sin( x ) · sin( x ) + cos( x ) · cos( x )

= - sin( x ) · sin( x ) + ( cos( x ) ) 2

= - ( sin( x ) ) 2 + ( cos( x ) ) 2

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= -3 cos( 2x +4 ) und vereinfache:

Lösung einblenden

f(x)= -3 cos( 2x +4 )

f'(x)= 3 sin( 2x +4 ) · ( 2 +0 )

= 3 sin( 2x +4 ) · ( 2 )

= 6 sin( 2x +4 )

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( 2x +8 ) · sin( -2x ) und vereinfache:

Lösung einblenden

f(x)= ( 2x +8 ) · sin( -2x )

f'(x)= ( 2 +0 ) · sin( -2x ) + ( 2x +8 ) · cos( -2x ) · ( -2 )

= 2 sin( -2x ) + ( 2x +8 ) · ( -2 cos( -2x ) )

= 2 sin( -2x ) -2 ( 2x +8 ) · cos( -2x )

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= ( x -1 ) 2 und der Graph einer Funktion g (in der Abbildung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

( x -1 ) 2 = 0 | 2
x -1 = 0
x -1 = 0 | +1
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 2 Schnittpunkte sind.

Das heißt, dass diese 2 x-Werte dieser Schnittpunkte alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +2x -8
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +2 )⋅g(x) + ( x 2 +2x -8 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -3 und bei x = 1 sind.
Der Extrempunkt des Graphs liegt bei x = -1, (also gilt g '(-1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -2 ± 2 2 -4 · 1 · ( -8 ) 21

x1,2 = -2 ± 4 +32 2

x1,2 = -2 ± 36 2

x1 = -2 + 36 2 = -2 +6 2 = 4 2 = 2

x2 = -2 - 36 2 = -2 -6 2 = -8 2 = -4

Für die Ableitung von f mit f(x)= x 2 +2x -8 gilt: f'(x)= 2x +2 . Diese setzen wir = 0:

2x +2 = 0 | -2
2x = -2 |:2
x = -1

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = -1, wodurch mit f'(-1)=0 und g'(-1)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(-1) = f'(-1)⋅g(-1) + f(-1)⋅g'(-1) = 0⋅g(-1) + f(-1)⋅0 = 0.

Damit hat h an der Stelle x = -1 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -9
und der Graph einer Funktion g (in der Abbildung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x )⋅g(x) + ( x 2 -9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir sofort, dass bei x = -4 sowohl eine Nullstelle als auch eine waagrechte Tangente vorliegt,
es gilt also: g(-4) = g'(-4) = 0.

Somit ist bei x = -4 in beiden Summanden der Produktregel eine Null als Faktor,
es gilt also h'(-4) = f'(-4)⋅g(-4) + f(-4)⋅g'(-4) = f'(-4)⋅0 + f(-4)⋅0 = 0.

Damit hat h an der Stelle x = -4 eine waagrechte Tangente.