Aufgabenbeispiele von Exponentialgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 2x - 7 2 = e

Lösung einblenden

e 2x - 7 2 = e

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 2x - 7 2 = e 1 2

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

2x - 7 2 = 1 2 |⋅ 2
2( 2x - 7 2 ) = 1
4x -7 = 1 | +7
4x = 8 |:4
x = 2

Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

7 e 2x = 4

Lösung einblenden
7 e 2x = 4 |:7
e 2x = 4 7 |ln(⋅)
2x = ln( 4 7 ) |:2
x = 1 2 ln( 4 7 ) ≈ -0.2798

L={ 1 2 ln( 4 7 ) }

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

5 e 3x = 7 e -x

Lösung einblenden
5 e 3x = 7 e -x | -7 e -x
5 e 3x -7 e -x = 0
( 5 e 4x -7 ) e -x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

5 e 4x -7 = 0 | +7
5 e 4x = 7 |:5
e 4x = 7 5 |ln(⋅)
4x = ln( 7 5 ) |:4
x1 = 1 4 ln( 7 5 ) ≈ 0.0841

2. Fall:

e -x = 0

Diese Gleichung hat keine Lösung!

L={ 1 4 ln( 7 5 ) }

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +3 e x -4 = 0

Lösung einblenden
e 2x +3 e x -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -4 ) 21

u1,2 = -3 ± 9 +16 2

u1,2 = -3 ± 25 2

u1 = -3 + 25 2 = -3 +5 2 = 2 2 = 1

u2 = -3 - 25 2 = -3 -5 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={0}

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 6x -2 e 3x -8 = 0

Lösung einblenden
e 6x -2 e 3x -8 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e 3x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

u1,2 = +2 ± 4 +32 2

u1,2 = +2 ± 36 2

u1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

u2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -8 ) = 1+ 8 = 9

x1,2 = 1 ± 9

x1 = 1 - 3 = -2

x2 = 1 + 3 = 4

Rücksubstitution:

u1: e 3x = 4

e 3x = 4 |ln(⋅)
3x = ln( 4 ) |:3
x1 = 1 3 ln( 4 ) ≈ 0.4621
x1 = 2 3 ln( 2 )

u2: e 3x = -2

e 3x = -2

Diese Gleichung hat keine Lösung!

L={ 2 3 ln( 2 ) }

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x +2 e x -15 = 0

Lösung einblenden
e 2x +2 e x -15 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +2u -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -2 ± 2 2 -4 · 1 · ( -15 ) 21

u1,2 = -2 ± 4 +60 2

u1,2 = -2 ± 64 2

u1 = -2 + 64 2 = -2 +8 2 = 6 2 = 3

u2 = -2 - 64 2 = -2 -8 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -15 ) = 1+ 15 = 16

x1,2 = -1 ± 16

x1 = -1 - 4 = -5

x2 = -1 + 4 = 3

Rücksubstitution:

u1: e x = 3

e x = 3 |ln(⋅)
x1 = ln( 3 ) ≈ 1.0986

u2: e x = -5

e x = -5

Diese Gleichung hat keine Lösung!

L={ ln( 3 ) }