Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
3 cos( 2x - 3 2 π) = 3

Lösung einblenden
3 cos( 2x - 3 2 π) = 3 |:3
canvas
cos( 2x - 3 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 3 2 π = 0 |⋅ 2
2( 2x - 3 2 π) = 0
4x -3π = 0 | +3π
4x = 3π |:4
x = 3 4 π

L={ 3 4 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 + 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) +3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +3 = 0 | -3
2 sin( x ) = -3 |:2
sin( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 2x + 3 2 π) -2 = -1

Lösung einblenden
-2 cos( 2x + 3 2 π) -2 = -1 | +2
-2 cos( 2x + 3 2 π) = 1 |:-2
canvas
cos( 2x + 3 2 π) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

2x + 3 2 π = 2 3 π

oder

2x + 3 2 π = 2 3 π+2π
2x + 3 2 π = 8 3 π |⋅ 2
2( 2x + 3 2 π) = 16 3 π
4x +3π = 16 3 π | -3π
4x = 7 3 π |:4
x1 = 7 12 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 3 2 π) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

2x + 3 2 π = 4 3 π

oder

2x + 3 2 π = 4 3 π+2π
2x + 3 2 π = 10 3 π |⋅ 2
2( 2x + 3 2 π) = 20 3 π
4x +3π = 20 3 π | -3π
4x = 11 3 π |:4
x2 = 11 12 π

L={ 7 12 π ; 11 12 π }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -2 cos( x + 1 2 π) +2 ) · ( x 2 -6x ) = 0

Lösung einblenden
( -2 cos( x + 1 2 π) +2 ) ( x 2 -6x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-2 cos( x + 1 2 π) +2 = 0 | -2
-2 cos( x + 1 2 π) = -2 |:-2
canvas
cos( x + 1 2 π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 0

oder

x + 1 2 π = 2π |⋅ 2
2( x + 1 2 π) = 4π
2x + π = 4π | - π
2x = 3π |:2
x1 = 3 2 π

2. Fall:

x 2 -6x = 0
x ( x -6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x2 = 0

2. Fall:

x -6 = 0 | +6
x3 = 6

L={0; 3 2 π ; 6 }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
-2 sin( 2x - 1 2 π) · ( sin( x ) +1 ) = 0

Lösung einblenden
-2 sin( 2x - 1 2 π) · ( sin( x ) +1 ) = 0
-2 sin( 2x - 1 2 π) ( sin( x ) +1 ) = 0
-2 ( sin( x ) +1 ) · sin( 2x - 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
sin( 2x - 1 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 1 2 π = 0 |⋅ 2
2( 2x - 1 2 π) = 0
4x - π = 0 | + π
4x = π |:4
x2 = 1 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - 1 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x - 1 2 π = π |⋅ 2
2( 2x - 1 2 π) = 2π
4x - π = 2π | + π
4x = 3π |:4
x3 = 3 4 π

Da sin( 2x - 1 2 π) die Periode π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 1 4 π + 1⋅ π = 5 4 π , x5 = 3 4 π + 1⋅ π = 7 4 π

L={ 1 4 π ; 3 4 π ; 5 4 π ; 3 2 π ; 7 4 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 + 3 2 sin( x ) + 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 + 3 2 sin( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Rücksubstitution:

u1: sin( x ) = -0,5

canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x1 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x2 = 7 6 π

u2: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = 3 2 π

L={ 7 6 π ; 3 2 π ; 11 6 π }