Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2 3 π ). Gib dabei immer die kleinsten positiven Lösungen an:
- sin( 3x + π) +3 = 3

Lösung einblenden
- sin( 3x + π) +3 = 3 | -3
- sin( 3x + π) = 0 |:-1
canvas
sin( 3x + π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x + π = 0

oder

3x + π = 0+2π
3x + π = 2π | - π
3x = π |:3
x1 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 3x + π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

3x + π = π | - π
3x = 0 |:3
x2 = 0

L={0; 1 3 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
sin( x ) + sin( x ) · cos( x ) = 0
( cos( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; π }

π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
cos( x - 3 2 π) +1 = 1,3

Lösung einblenden
cos( x - 3 2 π) +1 = 1,3 | -1 canvas
cos( x - 3 2 π) = 0,3 |cos-1(⋅)

Der WTR liefert nun als Wert 1.2661036727795

1. Fall:

x - 3 2 π = 1,266 |⋅ 2
2( x - 3 2 π) = 2,532
2x -3π = 2,532 | +3π
2x = 2,532 +3π
2x = 11,9568 |:2
x1 = 5,9784

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = 0,3 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.3 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,266
bzw. bei - 1,266 +2π= 5,017 liegen muss.

2. Fall:

x - 3 2 π = 5,017

oder

x - 3 2 π = 5,017 -2π |⋅ 2
2x -3π = 10,034 -4π | +3π
2x = 10,034 - π
2x = 6,8924 |:2
x2 = 3,4462

L={ 3,4462 ; 5,9784 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -5 ( sin( x ) ) 2 +4 = 0

Lösung einblenden
( sin( x ) ) 4 -5 ( sin( x ) ) 2 +4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 -5u +4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +5 ± ( -5 ) 2 -4 · 1 · 4 21

u1,2 = +5 ± 25 -16 2

u1,2 = +5 ± 9 2

u1 = 5 + 9 2 = 5 +3 2 = 8 2 = 4

u2 = 5 - 9 2 = 5 -3 2 = 2 2 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 4

( sin( x ) ) 2 = 4 | 2

1. Fall

sin( x ) = - 4 = -2
sin( x ) = -2

Diese Gleichung hat keine Lösung!

2. Fall

sin( x ) = 4 = 2
sin( x ) = 2

Diese Gleichung hat keine Lösung!

u2: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

L={ 1 2 π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 cos( 3x - 1 2 π) · sin( x ) = 0

Lösung einblenden
3 cos( 3x - 1 2 π) · sin( x ) = 0
3 cos( 3x - 1 2 π) · sin( x ) = 0
3 sin( x ) · cos( 3x - 1 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

canvas
cos( 3x - 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 1 2 π = 1 2 π |⋅ 2
2( 3x - 1 2 π) = π
6x - π = π | + π
6x = 2π |:6
x3 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - 1 2 π = 3 2 π

oder

3x - 1 2 π = 3 2 π-2π
3x - 1 2 π = - 1 2 π |⋅ 2
2( 3x - 1 2 π) = -π
6x - π = -π | + π
6x = 0 |:6
x4 = 0

Da cos( 3x - 1 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x5 = 1 3 π + 1⋅ 2 3 π = π , x6 = 0 + 1⋅ 2 3 π = 2 3 π
x7 = 1 3 π + 2⋅ 2 3 π = 5 3 π , x8 = 0 + 2⋅ 2 3 π = 4 3 π

L={0; 1 3 π ; 2 3 π ; π ; 4 3 π ; 5 3 π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 -3 cos( x ) -4 = 0

Lösung einblenden
( cos( x ) ) 2 -3 cos( x ) -4 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 -3u -4 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -4 ) 21

u1,2 = +3 ± 9 +16 2

u1,2 = +3 ± 25 2

u1 = 3 + 25 2 = 3 +5 2 = 8 2 = 4

u2 = 3 - 25 2 = 3 -5 2 = -2 2 = -1

Rücksubstitution:

u1: cos( x ) = 4

cos( x ) = 4

Diese Gleichung hat keine Lösung!

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

L={ π }