Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 2x + π) +3 = 3

Lösung einblenden
-2 cos( 2x + π) +3 = 3 | -3
-2 cos( 2x + π) = 0 |:-2
canvas
cos( 2x + π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + π = 1 2 π

oder

2x + π = 1 2 π+2π
2x + π = 5 2 π | - π
2x = 3 2 π |:2
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + π = 3 2 π | - π
2x = 1 2 π |:2
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-2 sin( x + 3 2 π) +3 = 1,6

Lösung einblenden
-2 sin( x + 3 2 π) +3 = 1,6 | -3
-2 sin( x + 3 2 π) = -1,4 |:-2
canvas
sin( x + 3 2 π) = 0,7 |sin-1(⋅)

Der WTR liefert nun als Wert 0.77539749661075

1. Fall:

x + 3 2 π = 0,775

oder

x + 3 2 π = 0,775 +2π |⋅ 2
2x +3π = 1,55 +4π | -3π
2x = 1,55 + π
2x = 4,6916 |:2
x1 = 2,3458

Am Einheitskreis erkennen wir, dass die Gleichung sin( x + 3 2 π) = 0,7 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,775 = 2,366 liegen muss.

2. Fall:

x + 3 2 π = 2,366

oder

x + 3 2 π = 2,366 +2π |⋅ 2
2x +3π = 4,732 +4π | -3π
2x = 4,732 + π
2x = 7,8736 |:2
x2 = 3,9368

L={ 2,3458 ; 3,9368 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 +4 sin( x ) +3 = 0

Lösung einblenden
( sin( x ) ) 2 +4 sin( x ) +3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +4u +3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -4 ± 4 2 -4 · 1 · 3 21

u1,2 = -4 ± 16 -12 2

u1,2 = -4 ± 4 2

u1 = -4 + 4 2 = -4 +2 2 = -2 2 = -1

u2 = -4 - 4 2 = -4 -2 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 3 = 4 - 3 = 1

x1,2 = -2 ± 1

x1 = -2 - 1 = -3

x2 = -2 + 1 = -1

Rücksubstitution:

u1: sin( x ) = -1

canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

u2: sin( x ) = -3

sin( x ) = -3

Diese Gleichung hat keine Lösung!

L={ 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 -2 ( sin( x ) ) 2 -3 = 0

Lösung einblenden
( sin( x ) ) 4 -2 ( sin( x ) ) 2 -3 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

u1,2 = +2 ± 4 +12 2

u1,2 = +2 ± 16 2

u1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

u2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

Rücksubstitution:

u1: ( sin( x ) ) 2 = 3

( sin( x ) ) 2 = 3 | 2

1. Fall

sin( x ) = - 3 -1,732
sin( x ) = -1,732

Diese Gleichung hat keine Lösung!

2. Fall

sin( x ) = 3 1,732
sin( x ) = 1,732

Diese Gleichung hat keine Lösung!

u2: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={}

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Lösung einblenden
( cos( x ) ) 2 +3 cos( x ) +2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 +3u +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · 2 21

u1,2 = -3 ± 9 -8 2

u1,2 = -3 ± 1 2

u1 = -3 + 1 2 = -3 +1 2 = -2 2 = -1

u2 = -3 - 1 2 = -3 -1 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = - 3 2 ± 1 4

x1 = - 3 2 - 1 2 = - 4 2 = -2

x2 = - 3 2 + 1 2 = - 2 2 = -1

Rücksubstitution:

u1: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

u2: cos( x ) = -2

cos( x ) = -2

Diese Gleichung hat keine Lösung!

L={ π }