Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- cos( 2x + 1 2 π) -1 = -1

Lösung einblenden
- cos( 2x + 1 2 π) -1 = -1 | +1
- cos( 2x + 1 2 π) = 0 |:-1
canvas
cos( 2x + 1 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 1 2 π = 1 2 π |⋅ 2
2( 2x + 1 2 π) = π
4x + π = π | - π
4x = 0 |:4
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 1 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x + 1 2 π = 3 2 π |⋅ 2
2( 2x + 1 2 π) = 3π
4x + π = 3π | - π
4x = 2π |:4
x2 = 1 2 π

L={0; 1 2 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 3 2 sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - 3 2 sin( x ) = 0
1 2 ( 2 sin( x ) -3 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

L={0; π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
- sin( 2x - π) -1 = -0,5

Lösung einblenden
- sin( 2x - π) -1 = -0,5 | +1
- sin( 2x - π) = 0,5 |:-1
canvas
sin( 2x - π) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

2x - π = 11 6 π

oder

2x - π = 11 6 π-2π
2x - π = - 1 6 π | + π
2x = 5 6 π |:2
x1 = 5 12 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x - π) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

2x - π = 7 6 π

oder

2x - π = 7 6 π-2π
2x - π = - 5 6 π | + π
2x = 1 6 π |:2
x2 = 1 12 π

L={ 1 12 π ; 5 12 π }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( - sin( x + 1 2 π) -1 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( - sin( x + 1 2 π) -1 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

- sin( x + 1 2 π) -1 = 0 | +1
- sin( x + 1 2 π) = 1 |:-1
canvas
sin( x + 1 2 π) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x + 1 2 π = 3 2 π |⋅ 2
2( x + 1 2 π) = 3π
2x + π = 3π | - π
2x = 2π |:2
x1 = π

2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 0

L={0; π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 cos( 3x - 3 2 π) · ( sin( x ) +1 ) = 0

Lösung einblenden
3 cos( 3x - 3 2 π) · ( sin( x ) +1 ) = 0
3 cos( 3x - 3 2 π) ( sin( x ) +1 ) = 0
3 ( sin( x ) +1 ) · cos( 3x - 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) +1 = 0 | -1 canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall:

canvas
cos( 3x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

3x - 3 2 π = 1 2 π

oder

3x - 3 2 π = 1 2 π-2π
3x - 3 2 π = - 3 2 π |⋅ 2
2( 3x - 3 2 π) = -3π
6x -3π = -3π | +3π
6x = 0 |:6
x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 3x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

3x - 3 2 π = 3 2 π

oder

3x - 3 2 π = 3 2 π-2π
3x - 3 2 π = - 1 2 π |⋅ 2
2( 3x - 3 2 π) = -π
6x -3π = -π | +3π
6x = 2π |:6
x3 = 1 3 π

Da cos( 3x - 3 2 π) die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x4 = 0 + 1⋅ 2 3 π = 2 3 π , x5 = 1 3 π + 1⋅ 2 3 π = π
x6 = 0 + 2⋅ 2 3 π = 4 3 π , x7 = 1 3 π + 2⋅ 2 3 π = 5 3 π

L={0; 1 3 π ; 2 3 π ; π ; 4 3 π ; 3 2 π ; 5 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 -3u +1 = 0 |: 2

u 2 - 3 2 u + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 4 ) 2 - ( 1 2 ) = 9 16 - 1 2 = 9 16 - 8 16 = 1 16

x1,2 = 3 4 ± 1 16

x1 = 3 4 - 1 4 = 2 4 = 0.5

x2 = 3 4 + 1 4 = 4 4 = 1

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = 0,5

( sin( x ) ) 2 = 0,5 | 2

1. Fall

sin( x ) = - 0,5 -0,707
canvas
sin( x ) = -0,707 |sin-1(⋅)

Der WTR liefert nun als Wert -0.78524716339515

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,498

1. Fall:

x3 = 5,498

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,498 =-2.3564 bzw. bei -2.3564+2π= 3,927 liegen muss.

2. Fall:

x4 = 3,927

2. Fall

sin( x ) = 0,5 0,707
canvas
sin( x ) = 0,707 |sin-1(⋅)

Der WTR liefert nun als Wert 0.78524716339515

1. Fall:

x5 = 0,785

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,785 = 2,356 liegen muss.

2. Fall:

x6 = 2,356

L={ 0,785 ; 1 2 π ; 2,356 ; 3,927 ; 3 2 π ; 5,498 }