Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 2x - π) -3 = -3

Lösung einblenden
-3 cos( 2x - π) -3 = -3 | +3
-3 cos( 2x - π) = 0 |:-3
canvas
cos( 2x - π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - π = 1 2 π | + π
2x = 3 2 π |:2
x1 = 3 4 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x - π = 3 2 π

oder

2x - π = 3 2 π-2π
2x - π = - 1 2 π | + π
2x = 1 2 π |:2
x2 = 1 4 π

L={ 1 4 π ; 3 4 π }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 3 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 3 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -3 = 0 | +3
2 sin( x ) = 3 |:2
sin( x ) = 1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-3 cos( 2x + 1 2 π) -3 = -2,7

Lösung einblenden
-3 cos( 2x + 1 2 π) -3 = -2,7 | +3
-3 cos( 2x + 1 2 π) = 0,3 |:-3
canvas
cos( 2x + 1 2 π) = -0,1 |cos-1(⋅)

Der WTR liefert nun als Wert 1.6709637479565

1. Fall:

2x + 1 2 π = 1,671 |⋅ 2
2( 2x + 1 2 π) = 3,342
4x + π = 3,342 | - π
4x = 3,342 - π
4x = 0,2004 |:4
x1 = 0,0501

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + 1 2 π) = -0,1 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,671
bzw. bei - 1,671 +2π= 4,612 liegen muss.

2. Fall:

2x + 1 2 π = 4,612 |⋅ 2
2( 2x + 1 2 π) = 9,224
4x + π = 9,224 | - π
4x = 9,224 - π
4x = 6,0824 |:4
x2 = 1,5206

L={ 0,0501 ; 1,5206 }

Trigonometrische Gleichungen (komplex) BF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 + cos( x ) = 0
( cos( x ) +1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) +1 = 0 | -1 canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; π ; 3 2 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; π ):
( x 2 -3x ) · ( 3 cos( 2x + π) -3 ) = 0

Lösung einblenden
( x 2 -3x ) ( 3 cos( 2x + π) -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 -3x = 0
x ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -3 = 0 | +3
x2 = 3

2. Fall:

3 cos( 2x + π) -3 = 0 | +3
3 cos( 2x + π) = 3 |:3
canvas
cos( 2x + π) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + π = 0

oder

2x + π = 0+2π
2x + π = 2π | - π
2x = π |:2
x3 = 1 2 π

L={0; 1 2 π ; 3 }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 + 1 2 ( sin( x ) ) 2 - 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 + 1 2 ( sin( x ) ) 2 - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 + 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 + 1 2 u - 1 2 ) = 0

2 u 2 + u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -1 ± 1 2 -4 · 2 · ( -1 ) 22

u1,2 = -1 ± 1 +8 4

u1,2 = -1 ± 9 4

u1 = -1 + 9 4 = -1 +3 4 = 2 4 = 0,5

u2 = -1 - 9 4 = -1 -3 4 = -4 4 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 + u -1 = 0 |: 2

u 2 + 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = - 1 4 ± 9 16

x1 = - 1 4 - 3 4 = - 4 4 = -1

x2 = - 1 4 + 3 4 = 2 4 = 0.5

Rücksubstitution:

u1: ( sin( x ) ) 2 = 0,5

( sin( x ) ) 2 = 0,5 | 2

1. Fall

sin( x ) = - 0,5 -0,707
canvas
sin( x ) = -0,707 |sin-1(⋅)

Der WTR liefert nun als Wert -0.78524716339515

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,498

1. Fall:

x1 = 5,498

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,498 =-2.3564 bzw. bei -2.3564+2π= 3,927 liegen muss.

2. Fall:

x2 = 3,927

2. Fall

sin( x ) = 0,5 0,707
canvas
sin( x ) = 0,707 |sin-1(⋅)

Der WTR liefert nun als Wert 0.78524716339515

1. Fall:

x3 = 0,785

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,785 = 2,356 liegen muss.

2. Fall:

x4 = 2,356

u2: ( sin( x ) ) 2 = -1

( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={ 0,785 ; 2,356 ; 3,927 ; 5,498 }