Aufgabenbeispiele von nach x auflösen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4x -26 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also x 2 -4x -26 = -5.

x 2 -4x -26 = -5 | +5

x 2 -4x -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -21 ) 21

x1,2 = +4 ± 16 +84 2

x1,2 = +4 ± 100 2

x1 = 4 + 100 2 = 4 +10 2 = 14 2 = 7

x2 = 4 - 100 2 = 4 -10 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -21 ) = 4+ 21 = 25

x1,2 = 2 ± 25

x1 = 2 - 5 = -3

x2 = 2 + 5 = 7

An den Stellen x1 = -3 und x2 = 7 gilt also f(x)= -5.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 3 +252 . Berechne alle Stellen für die gilt: f(x) = 2.

Lösung einblenden

Es gilt f(x) = 2, also -2 x 3 +252 = 2.

-2 x 3 +252 = 2 | -252
-2 x 3 = -250 |: ( -2 )
x 3 = 125 | 3
x = 125 3 = 5

An der Stelle x1 = 5 gilt also f(x)= 2.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= - x 2 -4x +21 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

- x 2 -4x +21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · ( -1 ) · 21 2( -1 )

x1,2 = +4 ± 16 +84 -2

x1,2 = +4 ± 100 -2

x1 = 4 + 100 -2 = 4 +10 -2 = 14 -2 = -7

x2 = 4 - 100 -2 = 4 -10 -2 = -6 -2 = 3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -4x +21 = 0 |: -1

x 2 +4x -21 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -21 ) = 4+ 21 = 25

x1,2 = -2 ± 25

x1 = -2 - 5 = -7

x2 = -2 + 5 = 3

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -7 |0), S2( 3 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= x 6 -2 x 3 -4 und g(x)= - x 3 -4 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

x 6 -2 x 3 -4 = - x 3 -4 | +4
x 6 -2 x 3 = - x 3 | + x 3
x 6 -2 x 3 + x 3 = 0
x 6 - x 3 = 0
x 3 ( x 3 -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 3 = 0 | 3
x1 = 0

2. Fall:

x 3 -1 = 0 | +1
x 3 = 1 | 3
x2 = 1 3 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g(0) = - 0 3 -4 = -4 S1(0| -4 )

g( 1 ) = - 1 3 -4 = -5 S2( 1 | -5 )