Aufgabenbeispiele von nach x auflösen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x ( x -3 ) ( x -2 ) 2 . Berechne alle Stellen für die gilt: f(x) = 0.

Lösung einblenden

Es gilt f(x) = 0, also x ( x -3 ) ( x -2 ) 2 = 0.

x ( x -3 ) ( x -2 ) 2 = 0
x ( x -2 ) 2 ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

( x -2 ) 2 ( x -3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( x -2 ) 2 = 0 | 2
x -2 = 0
x -2 = 0 | +2
x2 = 2

2. Fall:

x -3 = 0 | +3
x3 = 3

An den Stellen x1 = 0, x2 = 2 und x3 = 3 gilt also f(x)= 0.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= ( x +2 ) 4 -86 . Berechne alle Stellen für die gilt: f(x) = -5.

Lösung einblenden

Es gilt f(x) = -5, also ( x +2 ) 4 -86 = -5.

( x +2 ) 4 -86 = -5 | +86
( x +2 ) 4 = 81 | 4

1. Fall

x +2 = - 81 4 = -3
x +2 = -3 | -2
x1 = -5

2. Fall

x +2 = 81 4 = 3
x +2 = 3 | -2
x2 = 1

An den Stellen x1 = -5 und x2 = 1 gilt also f(x)= -5.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -2 x 3 +128 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-2 x 3 +128 = 0 | -128
-2 x 3 = -128 |: ( -2 )
x 3 = 64 | 3
x = 64 3 = 4

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( 4 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= 2 x 3 +3x -14 und g(x)= 3x +2 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

2 x 3 +3x -14 = 3x +2 | +14
2 x 3 +3x = 3x +16 | -3x
2 x 3 = 16 |:2
x 3 = 8 | 3
x = 8 3 = 2

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( 2 ) = 32 +2 = 8 S1( 2 | 8 )