Aufgabenbeispiele von nach x auflösen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


x-Werte berechnen (f(x) gegeben)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 - x 2 +1 . Berechne alle Stellen für die gilt: f(x) = 1.

Lösung einblenden

Es gilt f(x) = 1, also x 3 - x 2 +1 = 1.

x 3 - x 2 +1 = 1 | -1
x 3 - x 2 +1 -1 = 0
x 3 - x 2 = 0
x 2 ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x 2 = 0 | 2
x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

An den Stellen x1 = 0 und x2 = 1 gilt also f(x)= 1.

x-Werte berechnen (schwerer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 +11 . Berechne alle Stellen für die gilt: f(x) = 3.

Lösung einblenden

Es gilt f(x) = 3, also x 3 +11 = 3.

x 3 +11 = 3 | -11
x 3 = -8 | 3
x = - 8 3 = -2

An der Stelle x1 = -2 gilt also f(x)= 3.

Nullstellen berechnen

Beispiel:

Bestimme die Schnittpunkte der Funktion f mit f(x)= -2 ( x +4 ) 4 +32 mit der x-Achse.

Lösung einblenden

An den Schnittpunkten mit der x-Achse müssen die Funktionswerte null sein, also müssen wir den Funktionsterm =0 setzen:

-2 ( x +4 ) 4 +32 = 0 | -32
-2 ( x +4 ) 4 = -32 |: ( -2 )
( x +4 ) 4 = 16 | 4

1. Fall

x +4 = - 16 4 = -2
x +4 = -2 | -4
x1 = -6

2. Fall

x +4 = 16 4 = 2
x +4 = 2 | -4
x2 = -2

Da die y-Werte als Funktionswerte =0 sein müssen, ergeben sich als Schnittpunkte mit der x-Achse:

S1( -6 |0), S2( -2 |0)

Schnittpunkte berechnen

Beispiel:

Berechne die Schnittpunkte der Graphen der Funktionen f und g mit f(x)= - x 2 -3x -4 und g(x)= -3x -5 .

Lösung einblenden

An den Schnittstellen müssen die Funktionswerte der beiden Graphen gleich sein, also müssen wir die beiden Funktionsterme gleichsetzen:

- x 2 -3x -4 = -3x -5 | +4
- x 2 -3x = -3x -1 | +3x
- x 2 = -1 |: ( -1 )
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

Um noch die y-Werte der Schnittpunkte zu erhalten, muss man die Lösungen entweder in f oder in g einsetzen (weil es Schnittpunkte sind, müssen ja bei diesem x-Wert beide y-Werte (also Funktionswerte) gleich sein).

g( -1 ) = -3( -1 ) -5 = -2 S1( -1 | -2 )

g( 1 ) = -31 -5 = -8 S2( 1 | -8 )