Aufgabenbeispiele von Verschiebung / Streckung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Verschiebung am Graph erkennen (Potenzfktn)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 4 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Lösung einblenden

Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 2 nach oben. Der gesuchte Funktionsterm ist also g(x)= x 4 +2

Verschiebung am Graph erkennen II

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild sieht man den Graph von f(x)= x 3 in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.

Hinweis: Die beiden Graphen sind deckungsgleich.

Lösung einblenden

Man erkennt sofort, dass der rote Graph an der x-Achse gespiegelt (oder eben mit dem Streckfaktor -1 in y-Richtung gestreckt) wurde. Vor dem gesuchten Term muss also ein '-' stehen.

Somit erhält man für den gesuchten Funktionsterm g(x)= - x 3 .

Verschiebung am Term erkennen (Potenzfktn)

Beispiel:

Beschreibe, wie der Graph von g mit g(x)= - 1 3 ( x -1 ) 3 aus dem Graph von f mit f(x)= x 3 entsteht.

Lösung einblenden

Man erkennt sofort, dass das 'x' in g(x) in f(x) durch (x -1) ersetzt wurde. Das bedeutet, dass in g die Funktionswerte von f von den um 1 kleineren x-Werten genommen werden. (Also sind bei gleichen Funktionswerten die x-Werte bei g um 1 größer als bei f) Für den Graph bedeutet das, dass er um 1 nach rechts in x-Richtung verschoben wird.

Die - 1 3 als Koeffizient vor der Potenz bewirkt, dass die Funktionswerte mit dem Faktor - 1 3 multipliziert werden. Dadurch wird der Graph um - 1 3 gestreckt. (das negative Vorzeichen von - 1 3 ändert das Vorzeichen der Funktionswerte und bewirkt somit noch zusätzlich eine Spiegelung an der x-Achse.)

Term aus Versc/Streck. bestimmen (Potenzfktn)

Beispiel:

Der Graph von f mit f(x)= x 5 wird um den Faktor 3 in y-Richtung gestreckt und an der x-Achse gespiegelt und um 1 nach unten verschoben.

Bestimme den Funktionsterm g(x) des neuen Graphen.

Lösung einblenden

Bei der Verschiebung um 1 nach unten, bzw. -1 nach oben wird zu jedem Funktionswert noch -1 dazu addiert, also ein -1 an den Funktionsterm hinten angehängt.

Die Streckung um den Faktor 3 in y-Richtung erreicht man durch den Koeffizienten 3 vor der Potenz.

Die Spiegelung an der x-Achse bekommt man durch ein negatives Vorzeichen bei dem Koeffizienten vor der Potenz, also - 3.

Der gesuchte Funktionsterm g(x) ist somit: g(x)= -3 x 5 -1