Aufgabenbeispiele von Verschiebung / Streckung
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Verschiebung am Graph erkennen (Potenzfktn)
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 2 nach oben. Der gesuchte Funktionsterm ist also g(x)=
Verschiebung am Graph erkennen II
Beispiel:
Im Schaubild sieht man den Graph von in schwarzer Farbe.
Bestimme den Funktionsterm der Funktion g, deren Graph in rot eingezeichnet ist.
Hinweis: Die beiden Graphen sind deckungsgleich.
Man erkennt schnell, dass der rote Graph in y-Richtung verschoben wurde, und zwar um 4 nach unten, bzw. -4 nach oben.
Somit erhält man für den gesuchten Funktionsterm g(x)= .
Verschiebung am Term erkennen (Potenzfktn)
Beispiel:
Beschreibe, wie der Graph von g mit aus dem Graph von f mit entsteht.
Man erkennt sofort, dass das 'x' in g(x) in f(x) durch (x
Hinter dem Potenzterm steht noch eine 3. Das bedeutet, dass zu jedem Funktionswert noch 3 dazu addiert wird. Also wird der Graph von g um 3 nach oben verschoben.
Term aus Versc/Streck. bestimmen (Potenzfktn)
Beispiel:
Der Graph von f mit wird um 1 nach links verschoben und um 2 nach oben verschoben.
Bestimme den Funktionsterm g(x) des neuen Graphen.
Bei der Verschiebung um 1 nach links, bzw. -1 nach rechts wird jedes 'x' durch (x
Bei der Verschiebung um 2 nach oben wird zu jedem Funktionswert noch 2 dazu addiert, also ein 2 an den Funktionsterm hinten angehängt.
Der gesuchte Funktionsterm g(x) ist somit:
