Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Integralanwendungen BF
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach Minuten sind 2 Liter im Tank. Wieviel Liter sind nach Minuten darin?
=
=
=
=
=
=
=
=
Integralanwendungen
Beispiel:
Aus einem Wasserhahn läuft Wasser mit der Auslaufgeschwindigkeit f(x)= (in Liter pro Minute) in einen Wassertank. Nach 2 Minuten sind 9 Liter im Tank. Wieviel Liter sind nach 5 Minuten darin?
=
=
=
≈ 57,257
Integralfunktion - Gleichung
Beispiel:
Bestimme u > 3 so, dass =
=
=
=
=
=
Diese Integralfunktion soll ja den Wert annehmen, deswegen setzen wir sie gleich :
= | | |
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Da u=
Maximaler Bestand rückwärts
Beispiel:
Der maximale Bestand (Wassermenge im Tank) wird zu dem Zeitpunkt erreicht, an dem die Änderungsrate vom Positiven ins Negative wechselt, also wenn die Zunahme in eine Abnahme übergeht.
Wir suchen also eine Nullstelle von f mit Vorzeichenwechsel + nach -.
|
= | |
|
|
|
= | |ln(⋅) | |
|
= |
|
= | |
|
|
|
= |
|
|:( |
|
= |
|
Wir wissen nun, dass zum Zeitpunkt t = 4 der Bestand (Wassermenge im Tank) maximal ist.
Über die Fläche unter der Kurve können wir den gesamten Zuwachs bis zu diesem Zeitpunkt berechnen:
=
=
=
=
=
=
≈ 3,734
Der Zuwachs von Beginn bis zum Zeitpunkts des maximalen Bestands beträgt somit 3,734 m³
Wenn der maximale Bestand (Wassermenge im Tank) aber 50 m³ ist müssen ja zu Beginn bereits 50 m³ - 3,734 m³ ≈ 46,266 m³ vorhanden gewesen sein.
Der Anfangs-Wassermenge im Tank betrug demnach B0 = 46,266 m³.
Mittelwerte
Beispiel:
Die Temperatur an einem Wintertag kann näherungsweise durch die Funktion f mit f(x)=
Wir berechnen den Mittelwert mit der üblichen Formel:
=
=
=
=
=
=
uneigentliche Integrale
Beispiel:
Der Graph der Funktion f mit f(x)=
Untersuche, ob der Flächeninhalt endlich ist und bestimme in diesem Fall diesen Flächeninhalt.
=
=
=
Für u → ∞ gilt: A(u) =
Für den Flächeninhalt (immer positiv) gilt also I = 0.135
minimaler + maximaler Bestand (2 Kurven)
Beispiel:
- Nach wie vielen Minuten ist am meisten Wasser im Tank?
- Nach wie vielen Minuten ist am wenigsten Wasser im Tank?
- Wie viele Liter Wasser fließen in den ersten 2 Minuten in den Tank hinein?
Man erkennt schnell, dass von 0 bis 3 die Zuflussrate über der Abflussrate liegt, so dass hier das Wasservolumen zunimmt.
Von 3 bis 5 liegt dann die Abflussrate über der Zuflussrate, so dass hier das Wasservolumen abnimmt.
Von 5 bis 10 liegt dann wieder die Zuflussrate über der Abflussrate, so dass hier das Wasservolumen wieder zunimmt.
Die Werte der Zunahme (bzw. Abnahme) kann man an der Fläche zwischen den Kurven abzählen:
von 0 bis 3: ca. 6
Liter
von 3 bis 5: ca. -0.4 Liter
- Zeitpunkt des größten Bestands
Nachdem das Wasservolumen zwischen t = 0 und t = 3 zugenommen hat, ist die Abnahme zwischen t = 3 und t = 5 deutlich kleiner als der Zuwachs zwischen t = 5 und t = 10, so dass der Höchststand erst bei t = 10 erreicht wird.
Somit wird das Wasservolumen bei t = 10 min maximal. - Zeitpunkt des kleinsten Bestands
Da zwischen 0 und 3 mehr Zuwachs abzulesen ist als die Abnahme zwischen 3 und 5, ist der Zeitpunkt mit dem geringsten Bestand gleich zu Beginn, also bei t = 0 min.
- reiner Zuwachs nach 2 min
Da ja die blaue Kurve der Graph der Zunahme darstellt, müssen wir einfach die Fläche zwischen der blauen Kurve und der x-Achse im Intervall [0;2] ablesen. Diese ist ca. Z2 = 12.9 Liter .