Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 75 mod 5.
Das nächst kleinere Vielfache von 5 ist 75, weil ja 15 ⋅ 5 = 75 ist.
Also bleibt als Rest eben noch 75 - 75 = 0.
Somit gilt: 75 mod 5 ≡ 0.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 10 und 19 für die gilt n ≡ 95 mod 4.
Das nächst kleinere Vielfache von 4 ist 92, weil ja 23 ⋅ 4 = 92 ist.
Also bleibt als Rest eben noch 95 - 92 = 3.
Somit gilt: 95 mod 4 ≡ 3.
Wir suchen also eine Zahl zwischen 10 und 19 für die gilt: n ≡ 3 mod 4.
Dazu suchen wir erstmal ein Vielfaches von 4 in der Nähe von 10, z.B. 8 = 2 ⋅ 4
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 4 , sondern ≡ 3 mod 4 sein, also addieren wir noch 3 auf die 8 und erhalten so 11.
Somit gilt: 11 ≡ 95 ≡ 3 mod 4.
Modulo addieren
Beispiel:
Berechne ohne WTR: (2094 + 2800) mod 7.
Um längere Rechnungen zu vermeiden, rechnen wir:
(2094 + 2800) mod 7 ≡ (2094 mod 7 + 2800 mod 7) mod 7.
2094 mod 7 ≡ 1 mod 7 kann man relativ leicht bestimmen, weil ja 2094
= 2100
2800 mod 7 ≡ 0 mod 7 kann man relativ leicht bestimmen, weil ja 2800
= 2800
Somit gilt:
(2094 + 2800) mod 7 ≡ (1 + 0) mod 7 ≡ 1 mod 7.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (92 ⋅ 78) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(92 ⋅ 78) mod 8 ≡ (92 mod 8 ⋅ 78 mod 8) mod 8.
92 mod 8 ≡ 4 mod 8 kann man relativ leicht bestimmen, weil ja 92 = 88 + 4 = 11 ⋅ 8 + 4 ist.
78 mod 8 ≡ 6 mod 8 kann man relativ leicht bestimmen, weil ja 78 = 72 + 6 = 9 ⋅ 8 + 6 ist.
Somit gilt:
(92 ⋅ 78) mod 8 ≡ (4 ⋅ 6) mod 8 ≡ 24 mod 8 ≡ 0 mod 8.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
17 mod m = 23 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 17 aus, ob zufällig 17 mod m = 23 mod m gilt:
m=2: 17 mod 2 = 1 = 1 = 23 mod 2
m=3: 17 mod 3 = 2 = 2 = 23 mod 3
m=4: 17 mod 4 = 1 ≠ 3 = 23 mod 4
m=5: 17 mod 5 = 2 ≠ 3 = 23 mod 5
m=6: 17 mod 6 = 5 = 5 = 23 mod 6
m=7: 17 mod 7 = 3 ≠ 2 = 23 mod 7
m=8: 17 mod 8 = 1 ≠ 7 = 23 mod 8
m=9: 17 mod 9 = 8 ≠ 5 = 23 mod 9
m=10: 17 mod 10 = 7 ≠ 3 = 23 mod 10
m=11: 17 mod 11 = 6 ≠ 1 = 23 mod 11
m=12: 17 mod 12 = 5 ≠ 11 = 23 mod 12
m=13: 17 mod 13 = 4 ≠ 10 = 23 mod 13
m=14: 17 mod 14 = 3 ≠ 9 = 23 mod 14
m=15: 17 mod 15 = 2 ≠ 8 = 23 mod 15
m=16: 17 mod 16 = 1 ≠ 7 = 23 mod 16
m=17: 17 mod 17 = 0 ≠ 6 = 23 mod 17
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (23 - 17) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
