Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 25 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 24, weil ja 3 ⋅ 8 = 24 ist.

Also bleibt als Rest eben noch 25 - 24 = 1.

Somit gilt: 25 mod 8 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 10 und 21 für die gilt n ≡ 56 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 55, weil ja 5 ⋅ 11 = 55 ist.

Also bleibt als Rest eben noch 56 - 55 = 1.

Somit gilt: 56 mod 11 ≡ 1.

Wir suchen also eine Zahl zwischen 10 und 21 für die gilt: n ≡ 1 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 10, z.B. 11 = 1 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 1 mod 11 sein, also addieren wir noch 1 auf die 11 und erhalten so 12.

Somit gilt: 12 ≡ 56 ≡ 1 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (35002 + 34998) mod 7.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(35002 + 34998) mod 7 ≡ (35002 mod 7 + 34998 mod 7) mod 7.

35002 mod 7 ≡ 2 mod 7 kann man relativ leicht bestimmen, weil ja 35002 = 35000+2 = 7 ⋅ 5000 +2.

34998 mod 7 ≡ 5 mod 7 kann man relativ leicht bestimmen, weil ja 34998 = 35000-2 = 7 ⋅ 5000 -2 = 7 ⋅ 5000 - 7 + 5.

Somit gilt:

(35002 + 34998) mod 7 ≡ (2 + 5) mod 7 ≡ 7 mod 7 ≡ 0 mod 7.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (81 ⋅ 43) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(81 ⋅ 43) mod 6 ≡ (81 mod 6 ⋅ 43 mod 6) mod 6.

81 mod 6 ≡ 3 mod 6 kann man relativ leicht bestimmen, weil ja 81 = 78 + 3 = 13 ⋅ 6 + 3 ist.

43 mod 6 ≡ 1 mod 6 kann man relativ leicht bestimmen, weil ja 43 = 42 + 1 = 7 ⋅ 6 + 1 ist.

Somit gilt:

(81 ⋅ 43) mod 6 ≡ (3 ⋅ 1) mod 6 ≡ 3 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
9 mod m = 13 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 9 aus, ob zufällig 9 mod m = 13 mod m gilt:

m=2: 9 mod 2 = 1 = 1 = 13 mod 2

m=3: 9 mod 3 = 0 ≠ 1 = 13 mod 3

m=4: 9 mod 4 = 1 = 1 = 13 mod 4

m=5: 9 mod 5 = 4 ≠ 3 = 13 mod 5

m=6: 9 mod 6 = 3 ≠ 1 = 13 mod 6

m=7: 9 mod 7 = 2 ≠ 6 = 13 mod 7

m=8: 9 mod 8 = 1 ≠ 5 = 13 mod 8

m=9: 9 mod 9 = 0 ≠ 4 = 13 mod 9

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (13 - 9) = 4 bestimmen:

die gesuchten Zahlen sind somit:

2; 4