Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 56 mod 5.

Lösung einblenden

Das nächst kleinere Vielfache von 5 ist 55, weil ja 11 ⋅ 5 = 55 ist.

Also bleibt als Rest eben noch 56 - 55 = 1.

Somit gilt: 56 mod 5 ≡ 1.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 10 und 19 für die gilt n ≡ 78 mod 9.

Lösung einblenden

Das nächst kleinere Vielfache von 9 ist 72, weil ja 8 ⋅ 9 = 72 ist.

Also bleibt als Rest eben noch 78 - 72 = 6.

Somit gilt: 78 mod 9 ≡ 6.

Wir suchen also eine Zahl zwischen 10 und 19 für die gilt: n ≡ 6 mod 9.

Dazu suchen wir erstmal ein Vielfaches von 9 in der Nähe von 10, z.B. 9 = 1 ⋅ 9

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 9 , sondern ≡ 6 mod 9 sein, also addieren wir noch 6 auf die 9 und erhalten so 15.

Somit gilt: 15 ≡ 78 ≡ 6 mod 9.

Modulo addieren

Beispiel:

Berechne ohne WTR: (19997 + 797) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(19997 + 797) mod 4 ≡ (19997 mod 4 + 797 mod 4) mod 4.

19997 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 19997 = 19000+997 = 4 ⋅ 4750 +997.

797 mod 4 ≡ 1 mod 4 kann man relativ leicht bestimmen, weil ja 797 = 700+97 = 4 ⋅ 175 +97.

Somit gilt:

(19997 + 797) mod 4 ≡ (1 + 1) mod 4 ≡ 2 mod 4.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (30 ⋅ 62) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(30 ⋅ 62) mod 6 ≡ (30 mod 6 ⋅ 62 mod 6) mod 6.

30 mod 6 ≡ 0 mod 6 kann man relativ leicht bestimmen, weil ja 30 = 30 + 0 = 5 ⋅ 6 + 0 ist.

62 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 62 = 60 + 2 = 10 ⋅ 6 + 2 ist.

Somit gilt:

(30 ⋅ 62) mod 6 ≡ (0 ⋅ 2) mod 6 ≡ 0 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
16 mod m = 22 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 16 aus, ob zufällig 16 mod m = 22 mod m gilt:

m=2: 16 mod 2 = 0 = 0 = 22 mod 2

m=3: 16 mod 3 = 1 = 1 = 22 mod 3

m=4: 16 mod 4 = 0 ≠ 2 = 22 mod 4

m=5: 16 mod 5 = 1 ≠ 2 = 22 mod 5

m=6: 16 mod 6 = 4 = 4 = 22 mod 6

m=7: 16 mod 7 = 2 ≠ 1 = 22 mod 7

m=8: 16 mod 8 = 0 ≠ 6 = 22 mod 8

m=9: 16 mod 9 = 7 ≠ 4 = 22 mod 9

m=10: 16 mod 10 = 6 ≠ 2 = 22 mod 10

m=11: 16 mod 11 = 5 ≠ 0 = 22 mod 11

m=12: 16 mod 12 = 4 ≠ 10 = 22 mod 12

m=13: 16 mod 13 = 3 ≠ 9 = 22 mod 13

m=14: 16 mod 14 = 2 ≠ 8 = 22 mod 14

m=15: 16 mod 15 = 1 ≠ 7 = 22 mod 15

m=16: 16 mod 16 = 0 ≠ 6 = 22 mod 16

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (22 - 16) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6