Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 41 mod 7.
Das nächst kleinere Vielfache von 7 ist 35, weil ja 5 ⋅ 7 = 35 ist.
Also bleibt als Rest eben noch 41 - 35 = 6.
Somit gilt: 41 mod 7 ≡ 6.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 25 mod 4.
Das nächst kleinere Vielfache von 4 ist 24, weil ja 6 ⋅ 4 = 24 ist.
Also bleibt als Rest eben noch 25 - 24 = 1.
Somit gilt: 25 mod 4 ≡ 1.
Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 1 mod 4.
Dazu suchen wir erstmal ein Vielfaches von 4 in der Nähe von 60, z.B. 60 = 15 ⋅ 4
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 4 , sondern ≡ 1 mod 4 sein, also addieren wir noch 1 auf die 60 und erhalten so 61.
Somit gilt: 61 ≡ 25 ≡ 1 mod 4.
Modulo addieren
Beispiel:
Berechne ohne WTR: (9005 + 1809) mod 9.
Um längere Rechnungen zu vermeiden, rechnen wir:
(9005 + 1809) mod 9 ≡ (9005 mod 9 + 1809 mod 9) mod 9.
9005 mod 9 ≡ 5 mod 9 kann man relativ leicht bestimmen, weil ja 9005
= 9000
1809 mod 9 ≡ 0 mod 9 kann man relativ leicht bestimmen, weil ja 1809
= 1800
Somit gilt:
(9005 + 1809) mod 9 ≡ (5 + 0) mod 9 ≡ 5 mod 9.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (47 ⋅ 91) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(47 ⋅ 91) mod 8 ≡ (47 mod 8 ⋅ 91 mod 8) mod 8.
47 mod 8 ≡ 7 mod 8 kann man relativ leicht bestimmen, weil ja 47 = 40 + 7 = 5 ⋅ 8 + 7 ist.
91 mod 8 ≡ 3 mod 8 kann man relativ leicht bestimmen, weil ja 91 = 88 + 3 = 11 ⋅ 8 + 3 ist.
Somit gilt:
(47 ⋅ 91) mod 8 ≡ (7 ⋅ 3) mod 8 ≡ 21 mod 8 ≡ 5 mod 8.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
28 mod m = 40 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 28 aus, ob zufällig 28 mod m = 40 mod m gilt:
m=2: 28 mod 2 = 0 = 0 = 40 mod 2
m=3: 28 mod 3 = 1 = 1 = 40 mod 3
m=4: 28 mod 4 = 0 = 0 = 40 mod 4
m=5: 28 mod 5 = 3 ≠ 0 = 40 mod 5
m=6: 28 mod 6 = 4 = 4 = 40 mod 6
m=7: 28 mod 7 = 0 ≠ 5 = 40 mod 7
m=8: 28 mod 8 = 4 ≠ 0 = 40 mod 8
m=9: 28 mod 9 = 1 ≠ 4 = 40 mod 9
m=10: 28 mod 10 = 8 ≠ 0 = 40 mod 10
m=11: 28 mod 11 = 6 ≠ 7 = 40 mod 11
m=12: 28 mod 12 = 4 = 4 = 40 mod 12
m=13: 28 mod 13 = 2 ≠ 1 = 40 mod 13
m=14: 28 mod 14 = 0 ≠ 12 = 40 mod 14
m=15: 28 mod 15 = 13 ≠ 10 = 40 mod 15
m=16: 28 mod 16 = 12 ≠ 8 = 40 mod 16
m=17: 28 mod 17 = 11 ≠ 6 = 40 mod 17
m=18: 28 mod 18 = 10 ≠ 4 = 40 mod 18
m=19: 28 mod 19 = 9 ≠ 2 = 40 mod 19
m=20: 28 mod 20 = 8 ≠ 0 = 40 mod 20
m=21: 28 mod 21 = 7 ≠ 19 = 40 mod 21
m=22: 28 mod 22 = 6 ≠ 18 = 40 mod 22
m=23: 28 mod 23 = 5 ≠ 17 = 40 mod 23
m=24: 28 mod 24 = 4 ≠ 16 = 40 mod 24
m=25: 28 mod 25 = 3 ≠ 15 = 40 mod 25
m=26: 28 mod 26 = 2 ≠ 14 = 40 mod 26
m=27: 28 mod 27 = 1 ≠ 13 = 40 mod 27
m=28: 28 mod 28 = 0 ≠ 12 = 40 mod 28
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (40 - 28) = 12 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 4; 6; 12
