Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 97 mod 9.

Lösung einblenden

Das nächst kleinere Vielfache von 9 ist 90, weil ja 10 ⋅ 9 = 90 ist.

Also bleibt als Rest eben noch 97 - 90 = 7.

Somit gilt: 97 mod 9 ≡ 7.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 90 und 101 für die gilt n ≡ 61 mod 11.

Lösung einblenden

Das nächst kleinere Vielfache von 11 ist 55, weil ja 5 ⋅ 11 = 55 ist.

Also bleibt als Rest eben noch 61 - 55 = 6.

Somit gilt: 61 mod 11 ≡ 6.

Wir suchen also eine Zahl zwischen 90 und 101 für die gilt: n ≡ 6 mod 11.

Dazu suchen wir erstmal ein Vielfaches von 11 in der Nähe von 90, z.B. 88 = 8 ⋅ 11

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 11 , sondern ≡ 6 mod 11 sein, also addieren wir noch 6 auf die 88 und erhalten so 94.

Somit gilt: 94 ≡ 61 ≡ 6 mod 11.

Modulo addieren

Beispiel:

Berechne ohne WTR: (1000 - 1500) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(1000 - 1500) mod 5 ≡ (1000 mod 5 - 1500 mod 5) mod 5.

1000 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 1000 = 1000+0 = 5 ⋅ 200 +0.

1500 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 1500 = 1500+0 = 5 ⋅ 300 +0.

Somit gilt:

(1000 - 1500) mod 5 ≡ (0 - 0) mod 5 ≡ 0 mod 5.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (37 ⋅ 58) mod 8.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(37 ⋅ 58) mod 8 ≡ (37 mod 8 ⋅ 58 mod 8) mod 8.

37 mod 8 ≡ 5 mod 8 kann man relativ leicht bestimmen, weil ja 37 = 32 + 5 = 4 ⋅ 8 + 5 ist.

58 mod 8 ≡ 2 mod 8 kann man relativ leicht bestimmen, weil ja 58 = 56 + 2 = 7 ⋅ 8 + 2 ist.

Somit gilt:

(37 ⋅ 58) mod 8 ≡ (5 ⋅ 2) mod 8 ≡ 10 mod 8 ≡ 2 mod 8.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
12 mod m = 18 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 12 aus, ob zufällig 12 mod m = 18 mod m gilt:

m=2: 12 mod 2 = 0 = 0 = 18 mod 2

m=3: 12 mod 3 = 0 = 0 = 18 mod 3

m=4: 12 mod 4 = 0 ≠ 2 = 18 mod 4

m=5: 12 mod 5 = 2 ≠ 3 = 18 mod 5

m=6: 12 mod 6 = 0 = 0 = 18 mod 6

m=7: 12 mod 7 = 5 ≠ 4 = 18 mod 7

m=8: 12 mod 8 = 4 ≠ 2 = 18 mod 8

m=9: 12 mod 9 = 3 ≠ 0 = 18 mod 9

m=10: 12 mod 10 = 2 ≠ 8 = 18 mod 10

m=11: 12 mod 11 = 1 ≠ 7 = 18 mod 11

m=12: 12 mod 12 = 0 ≠ 6 = 18 mod 12

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (18 - 12) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6