Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 21 mod 3.
Das nächst kleinere Vielfache von 3 ist 21, weil ja 7 ⋅ 3 = 21 ist.
Also bleibt als Rest eben noch 21 - 21 = 0.
Somit gilt: 21 mod 3 ≡ 0.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 36 mod 7.
Das nächst kleinere Vielfache von 7 ist 35, weil ja 5 ⋅ 7 = 35 ist.
Also bleibt als Rest eben noch 36 - 35 = 1.
Somit gilt: 36 mod 7 ≡ 1.
Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 1 mod 7.
Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 60, z.B. 63 = 9 ⋅ 7
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 1 mod 7 sein, also addieren wir noch 1 auf die 63 und erhalten so 64.
Somit gilt: 64 ≡ 36 ≡ 1 mod 7.
Modulo addieren
Beispiel:
Berechne ohne WTR: (301 - 5998) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(301 - 5998) mod 3 ≡ (301 mod 3 - 5998 mod 3) mod 3.
301 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 301
= 300
5998 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 5998
= 6000
Somit gilt:
(301 - 5998) mod 3 ≡ (1 - 1) mod 3 ≡ 0 mod 3.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (35 ⋅ 67) mod 5.
Um längere Rechnungen zu vermeiden, rechnen wir:
(35 ⋅ 67) mod 5 ≡ (35 mod 5 ⋅ 67 mod 5) mod 5.
35 mod 5 ≡ 0 mod 5 kann man relativ leicht bestimmen, weil ja 35 = 35 + 0 = 7 ⋅ 5 + 0 ist.
67 mod 5 ≡ 2 mod 5 kann man relativ leicht bestimmen, weil ja 67 = 65 + 2 = 13 ⋅ 5 + 2 ist.
Somit gilt:
(35 ⋅ 67) mod 5 ≡ (0 ⋅ 2) mod 5 ≡ 0 mod 5.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
27 mod m = 37 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 27 aus, ob zufällig 27 mod m = 37 mod m gilt:
m=2: 27 mod 2 = 1 = 1 = 37 mod 2
m=3: 27 mod 3 = 0 ≠ 1 = 37 mod 3
m=4: 27 mod 4 = 3 ≠ 1 = 37 mod 4
m=5: 27 mod 5 = 2 = 2 = 37 mod 5
m=6: 27 mod 6 = 3 ≠ 1 = 37 mod 6
m=7: 27 mod 7 = 6 ≠ 2 = 37 mod 7
m=8: 27 mod 8 = 3 ≠ 5 = 37 mod 8
m=9: 27 mod 9 = 0 ≠ 1 = 37 mod 9
m=10: 27 mod 10 = 7 = 7 = 37 mod 10
m=11: 27 mod 11 = 5 ≠ 4 = 37 mod 11
m=12: 27 mod 12 = 3 ≠ 1 = 37 mod 12
m=13: 27 mod 13 = 1 ≠ 11 = 37 mod 13
m=14: 27 mod 14 = 13 ≠ 9 = 37 mod 14
m=15: 27 mod 15 = 12 ≠ 7 = 37 mod 15
m=16: 27 mod 16 = 11 ≠ 5 = 37 mod 16
m=17: 27 mod 17 = 10 ≠ 3 = 37 mod 17
m=18: 27 mod 18 = 9 ≠ 1 = 37 mod 18
m=19: 27 mod 19 = 8 ≠ 18 = 37 mod 19
m=20: 27 mod 20 = 7 ≠ 17 = 37 mod 20
m=21: 27 mod 21 = 6 ≠ 16 = 37 mod 21
m=22: 27 mod 22 = 5 ≠ 15 = 37 mod 22
m=23: 27 mod 23 = 4 ≠ 14 = 37 mod 23
m=24: 27 mod 24 = 3 ≠ 13 = 37 mod 24
m=25: 27 mod 25 = 2 ≠ 12 = 37 mod 25
m=26: 27 mod 26 = 1 ≠ 11 = 37 mod 26
m=27: 27 mod 27 = 0 ≠ 10 = 37 mod 27
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (37 - 27) = 10 bestimmen:
die gesuchten Zahlen sind somit:
2; 5; 10
