Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 57 mod 7.
Das nächst kleinere Vielfache von 7 ist 56, weil ja 8 ⋅ 7 = 56 ist.
Also bleibt als Rest eben noch 57 - 56 = 1.
Somit gilt: 57 mod 7 ≡ 1.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 80 und 89 für die gilt n ≡ 23 mod 7.
Das nächst kleinere Vielfache von 7 ist 21, weil ja 3 ⋅ 7 = 21 ist.
Also bleibt als Rest eben noch 23 - 21 = 2.
Somit gilt: 23 mod 7 ≡ 2.
Wir suchen also eine Zahl zwischen 80 und 89 für die gilt: n ≡ 2 mod 7.
Dazu suchen wir erstmal ein Vielfaches von 7 in der Nähe von 80, z.B. 84 = 12 ⋅ 7
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 7 , sondern ≡ 2 mod 7 sein, also addieren wir noch 2 auf die 84 und erhalten so 86.
Somit gilt: 86 ≡ 23 ≡ 2 mod 7.
Modulo addieren
Beispiel:
Berechne ohne WTR: (8000 + 39992) mod 8.
Um längere Rechnungen zu vermeiden, rechnen wir:
(8000 + 39992) mod 8 ≡ (8000 mod 8 + 39992 mod 8) mod 8.
8000 mod 8 ≡ 0 mod 8 kann man relativ leicht bestimmen, weil ja 8000
= 8000
39992 mod 8 ≡ 0 mod 8 kann man relativ leicht bestimmen, weil ja 39992
= 39000
Somit gilt:
(8000 + 39992) mod 8 ≡ (0 + 0) mod 8 ≡ 0 mod 8.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (21 ⋅ 21) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(21 ⋅ 21) mod 3 ≡ (21 mod 3 ⋅ 21 mod 3) mod 3.
21 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 21 = 21 + 0 = 7 ⋅ 3 + 0 ist.
21 mod 3 ≡ 0 mod 3 kann man relativ leicht bestimmen, weil ja 21 = 21 + 0 = 7 ⋅ 3 + 0 ist.
Somit gilt:
(21 ⋅ 21) mod 3 ≡ (0 ⋅ 0) mod 3 ≡ 0 mod 3.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
20 mod m = 26 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 20 aus, ob zufällig 20 mod m = 26 mod m gilt:
m=2: 20 mod 2 = 0 = 0 = 26 mod 2
m=3: 20 mod 3 = 2 = 2 = 26 mod 3
m=4: 20 mod 4 = 0 ≠ 2 = 26 mod 4
m=5: 20 mod 5 = 0 ≠ 1 = 26 mod 5
m=6: 20 mod 6 = 2 = 2 = 26 mod 6
m=7: 20 mod 7 = 6 ≠ 5 = 26 mod 7
m=8: 20 mod 8 = 4 ≠ 2 = 26 mod 8
m=9: 20 mod 9 = 2 ≠ 8 = 26 mod 9
m=10: 20 mod 10 = 0 ≠ 6 = 26 mod 10
m=11: 20 mod 11 = 9 ≠ 4 = 26 mod 11
m=12: 20 mod 12 = 8 ≠ 2 = 26 mod 12
m=13: 20 mod 13 = 7 ≠ 0 = 26 mod 13
m=14: 20 mod 14 = 6 ≠ 12 = 26 mod 14
m=15: 20 mod 15 = 5 ≠ 11 = 26 mod 15
m=16: 20 mod 16 = 4 ≠ 10 = 26 mod 16
m=17: 20 mod 17 = 3 ≠ 9 = 26 mod 17
m=18: 20 mod 18 = 2 ≠ 8 = 26 mod 18
m=19: 20 mod 19 = 1 ≠ 7 = 26 mod 19
m=20: 20 mod 20 = 0 ≠ 6 = 26 mod 20
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (26 - 20) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
