Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 99 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 90, weil ja 9 ⋅ 10 = 90 ist.

Also bleibt als Rest eben noch 99 - 90 = 9.

Somit gilt: 99 mod 10 ≡ 9.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 50 und 59 für die gilt n ≡ 71 mod 4.

Lösung einblenden

Das nächst kleinere Vielfache von 4 ist 68, weil ja 17 ⋅ 4 = 68 ist.

Also bleibt als Rest eben noch 71 - 68 = 3.

Somit gilt: 71 mod 4 ≡ 3.

Wir suchen also eine Zahl zwischen 50 und 59 für die gilt: n ≡ 3 mod 4.

Dazu suchen wir erstmal ein Vielfaches von 4 in der Nähe von 50, z.B. 48 = 12 ⋅ 4

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 4 , sondern ≡ 3 mod 4 sein, also addieren wir noch 3 auf die 48 und erhalten so 51.

Somit gilt: 51 ≡ 71 ≡ 3 mod 4.

Modulo addieren

Beispiel:

Berechne ohne WTR: (2998 - 1201) mod 3.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(2998 - 1201) mod 3 ≡ (2998 mod 3 - 1201 mod 3) mod 3.

2998 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 2998 = 3000-2 = 3 ⋅ 1000 -2 = 3 ⋅ 1000 - 3 + 1.

1201 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 1201 = 1200+1 = 3 ⋅ 400 +1.

Somit gilt:

(2998 - 1201) mod 3 ≡ (1 - 1) mod 3 ≡ 0 mod 3.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (68 ⋅ 52) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(68 ⋅ 52) mod 6 ≡ (68 mod 6 ⋅ 52 mod 6) mod 6.

68 mod 6 ≡ 2 mod 6 kann man relativ leicht bestimmen, weil ja 68 = 66 + 2 = 11 ⋅ 6 + 2 ist.

52 mod 6 ≡ 4 mod 6 kann man relativ leicht bestimmen, weil ja 52 = 48 + 4 = 8 ⋅ 6 + 4 ist.

Somit gilt:

(68 ⋅ 52) mod 6 ≡ (2 ⋅ 4) mod 6 ≡ 8 mod 6 ≡ 2 mod 6.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
38 mod m = 53 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 38 aus, ob zufällig 38 mod m = 53 mod m gilt:

m=2: 38 mod 2 = 0 ≠ 1 = 53 mod 2

m=3: 38 mod 3 = 2 = 2 = 53 mod 3

m=4: 38 mod 4 = 2 ≠ 1 = 53 mod 4

m=5: 38 mod 5 = 3 = 3 = 53 mod 5

m=6: 38 mod 6 = 2 ≠ 5 = 53 mod 6

m=7: 38 mod 7 = 3 ≠ 4 = 53 mod 7

m=8: 38 mod 8 = 6 ≠ 5 = 53 mod 8

m=9: 38 mod 9 = 2 ≠ 8 = 53 mod 9

m=10: 38 mod 10 = 8 ≠ 3 = 53 mod 10

m=11: 38 mod 11 = 5 ≠ 9 = 53 mod 11

m=12: 38 mod 12 = 2 ≠ 5 = 53 mod 12

m=13: 38 mod 13 = 12 ≠ 1 = 53 mod 13

m=14: 38 mod 14 = 10 ≠ 11 = 53 mod 14

m=15: 38 mod 15 = 8 = 8 = 53 mod 15

m=16: 38 mod 16 = 6 ≠ 5 = 53 mod 16

m=17: 38 mod 17 = 4 ≠ 2 = 53 mod 17

m=18: 38 mod 18 = 2 ≠ 17 = 53 mod 18

m=19: 38 mod 19 = 0 ≠ 15 = 53 mod 19

m=20: 38 mod 20 = 18 ≠ 13 = 53 mod 20

m=21: 38 mod 21 = 17 ≠ 11 = 53 mod 21

m=22: 38 mod 22 = 16 ≠ 9 = 53 mod 22

m=23: 38 mod 23 = 15 ≠ 7 = 53 mod 23

m=24: 38 mod 24 = 14 ≠ 5 = 53 mod 24

m=25: 38 mod 25 = 13 ≠ 3 = 53 mod 25

m=26: 38 mod 26 = 12 ≠ 1 = 53 mod 26

m=27: 38 mod 27 = 11 ≠ 26 = 53 mod 27

m=28: 38 mod 28 = 10 ≠ 25 = 53 mod 28

m=29: 38 mod 29 = 9 ≠ 24 = 53 mod 29

m=30: 38 mod 30 = 8 ≠ 23 = 53 mod 30

m=31: 38 mod 31 = 7 ≠ 22 = 53 mod 31

m=32: 38 mod 32 = 6 ≠ 21 = 53 mod 32

m=33: 38 mod 33 = 5 ≠ 20 = 53 mod 33

m=34: 38 mod 34 = 4 ≠ 19 = 53 mod 34

m=35: 38 mod 35 = 3 ≠ 18 = 53 mod 35

m=36: 38 mod 36 = 2 ≠ 17 = 53 mod 36

m=37: 38 mod 37 = 1 ≠ 16 = 53 mod 37

m=38: 38 mod 38 = 0 ≠ 15 = 53 mod 38

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (53 - 38) = 15 bestimmen:

die gesuchten Zahlen sind somit:

3; 5; 15