Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 26 mod 4.
Das nächst kleinere Vielfache von 4 ist 24, weil ja 6 ⋅ 4 = 24 ist.
Also bleibt als Rest eben noch 26 - 24 = 2.
Somit gilt: 26 mod 4 ≡ 2.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 80 und 89 für die gilt n ≡ 55 mod 3.
Das nächst kleinere Vielfache von 3 ist 54, weil ja 18 ⋅ 3 = 54 ist.
Also bleibt als Rest eben noch 55 - 54 = 1.
Somit gilt: 55 mod 3 ≡ 1.
Wir suchen also eine Zahl zwischen 80 und 89 für die gilt: n ≡ 1 mod 3.
Dazu suchen wir erstmal ein Vielfaches von 3 in der Nähe von 80, z.B. 81 = 27 ⋅ 3
Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 3 , sondern ≡ 1 mod 3 sein, also addieren wir noch 1 auf die 81 und erhalten so 82.
Somit gilt: 82 ≡ 55 ≡ 1 mod 3.
Modulo addieren
Beispiel:
Berechne ohne WTR: (73 + 27996) mod 7.
Um längere Rechnungen zu vermeiden, rechnen wir:
(73 + 27996) mod 7 ≡ (73 mod 7 + 27996 mod 7) mod 7.
73 mod 7 ≡ 3 mod 7 kann man relativ leicht bestimmen, weil ja 73
= 70
27996 mod 7 ≡ 3 mod 7 kann man relativ leicht bestimmen, weil ja 27996
= 28000
Somit gilt:
(73 + 27996) mod 7 ≡ (3 + 3) mod 7 ≡ 6 mod 7.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (89 ⋅ 48) mod 7.
Um längere Rechnungen zu vermeiden, rechnen wir:
(89 ⋅ 48) mod 7 ≡ (89 mod 7 ⋅ 48 mod 7) mod 7.
89 mod 7 ≡ 5 mod 7 kann man relativ leicht bestimmen, weil ja 89 = 84 + 5 = 12 ⋅ 7 + 5 ist.
48 mod 7 ≡ 6 mod 7 kann man relativ leicht bestimmen, weil ja 48 = 42 + 6 = 6 ⋅ 7 + 6 ist.
Somit gilt:
(89 ⋅ 48) mod 7 ≡ (5 ⋅ 6) mod 7 ≡ 30 mod 7 ≡ 2 mod 7.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
19 mod m = 25 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 19 aus, ob zufällig 19 mod m = 25 mod m gilt:
m=2: 19 mod 2 = 1 = 1 = 25 mod 2
m=3: 19 mod 3 = 1 = 1 = 25 mod 3
m=4: 19 mod 4 = 3 ≠ 1 = 25 mod 4
m=5: 19 mod 5 = 4 ≠ 0 = 25 mod 5
m=6: 19 mod 6 = 1 = 1 = 25 mod 6
m=7: 19 mod 7 = 5 ≠ 4 = 25 mod 7
m=8: 19 mod 8 = 3 ≠ 1 = 25 mod 8
m=9: 19 mod 9 = 1 ≠ 7 = 25 mod 9
m=10: 19 mod 10 = 9 ≠ 5 = 25 mod 10
m=11: 19 mod 11 = 8 ≠ 3 = 25 mod 11
m=12: 19 mod 12 = 7 ≠ 1 = 25 mod 12
m=13: 19 mod 13 = 6 ≠ 12 = 25 mod 13
m=14: 19 mod 14 = 5 ≠ 11 = 25 mod 14
m=15: 19 mod 15 = 4 ≠ 10 = 25 mod 15
m=16: 19 mod 16 = 3 ≠ 9 = 25 mod 16
m=17: 19 mod 17 = 2 ≠ 8 = 25 mod 17
m=18: 19 mod 18 = 1 ≠ 7 = 25 mod 18
m=19: 19 mod 19 = 0 ≠ 6 = 25 mod 19
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (25 - 19) = 6 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 6
