Aufgabenbeispiele von MGK Klasse 9
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
einfache Modulo Aufgabe
Beispiel:
Bestimme (die kleinste natürliche Zahl für die gilt:) 71 mod 8.
Das nächst kleinere Vielfache von 8 ist 64, weil ja 8 ⋅ 8 = 64 ist.
Also bleibt als Rest eben noch 71 - 64 = 7.
Somit gilt: 71 mod 8 ≡ 7.
Modulo in einem Intervall
Beispiel:
Bestimme eine Zahl n zwischen 90 und 99 für die gilt n ≡ 20 mod 5.
Das nächst kleinere Vielfache von 5 ist 20, weil ja 4 ⋅ 5 = 20 ist.
Also bleibt als Rest eben noch 20 - 20 = 0.
Somit gilt: 20 mod 5 ≡ 0.
Wir suchen also eine Zahl zwischen 90 und 99 für die gilt: n ≡ 0 mod 5.
Dazu suchen wir einfach ein Vielfaches von 5 in der Nähe von 90, z.B. 90 = 18 ⋅ 5
Somit gilt: 90 ≡ 20 ≡ 0 mod 5.
Modulo addieren
Beispiel:
Berechne ohne WTR: (27999 + 356) mod 7.
Um längere Rechnungen zu vermeiden, rechnen wir:
(27999 + 356) mod 7 ≡ (27999 mod 7 + 356 mod 7) mod 7.
27999 mod 7 ≡ 6 mod 7 kann man relativ leicht bestimmen, weil ja 27999
= 28000
356 mod 7 ≡ 6 mod 7 kann man relativ leicht bestimmen, weil ja 356
= 350
Somit gilt:
(27999 + 356) mod 7 ≡ (6 + 6) mod 7 ≡ 12 mod 7 ≡ 5 mod 7.
Modulo multiplizieren
Beispiel:
Berechne ohne WTR: (74 ⋅ 64) mod 3.
Um längere Rechnungen zu vermeiden, rechnen wir:
(74 ⋅ 64) mod 3 ≡ (74 mod 3 ⋅ 64 mod 3) mod 3.
74 mod 3 ≡ 2 mod 3 kann man relativ leicht bestimmen, weil ja 74 = 72 + 2 = 24 ⋅ 3 + 2 ist.
64 mod 3 ≡ 1 mod 3 kann man relativ leicht bestimmen, weil ja 64 = 63 + 1 = 21 ⋅ 3 + 1 ist.
Somit gilt:
(74 ⋅ 64) mod 3 ≡ (2 ⋅ 1) mod 3 ≡ 2 mod 3.
gemeinsame Modulos finden
Beispiel:
Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
32 mod m = 44 mod m.
1. (etwas umständliche) Möglichkeit:
Wir probieren einfach alle natürliche Zahlen m<= 32 aus, ob zufällig 32 mod m = 44 mod m gilt:
m=2: 32 mod 2 = 0 = 0 = 44 mod 2
m=3: 32 mod 3 = 2 = 2 = 44 mod 3
m=4: 32 mod 4 = 0 = 0 = 44 mod 4
m=5: 32 mod 5 = 2 ≠ 4 = 44 mod 5
m=6: 32 mod 6 = 2 = 2 = 44 mod 6
m=7: 32 mod 7 = 4 ≠ 2 = 44 mod 7
m=8: 32 mod 8 = 0 ≠ 4 = 44 mod 8
m=9: 32 mod 9 = 5 ≠ 8 = 44 mod 9
m=10: 32 mod 10 = 2 ≠ 4 = 44 mod 10
m=11: 32 mod 11 = 10 ≠ 0 = 44 mod 11
m=12: 32 mod 12 = 8 = 8 = 44 mod 12
m=13: 32 mod 13 = 6 ≠ 5 = 44 mod 13
m=14: 32 mod 14 = 4 ≠ 2 = 44 mod 14
m=15: 32 mod 15 = 2 ≠ 14 = 44 mod 15
m=16: 32 mod 16 = 0 ≠ 12 = 44 mod 16
m=17: 32 mod 17 = 15 ≠ 10 = 44 mod 17
m=18: 32 mod 18 = 14 ≠ 8 = 44 mod 18
m=19: 32 mod 19 = 13 ≠ 6 = 44 mod 19
m=20: 32 mod 20 = 12 ≠ 4 = 44 mod 20
m=21: 32 mod 21 = 11 ≠ 2 = 44 mod 21
m=22: 32 mod 22 = 10 ≠ 0 = 44 mod 22
m=23: 32 mod 23 = 9 ≠ 21 = 44 mod 23
m=24: 32 mod 24 = 8 ≠ 20 = 44 mod 24
m=25: 32 mod 25 = 7 ≠ 19 = 44 mod 25
m=26: 32 mod 26 = 6 ≠ 18 = 44 mod 26
m=27: 32 mod 27 = 5 ≠ 17 = 44 mod 27
m=28: 32 mod 28 = 4 ≠ 16 = 44 mod 28
m=29: 32 mod 29 = 3 ≠ 15 = 44 mod 29
m=30: 32 mod 30 = 2 ≠ 14 = 44 mod 30
m=31: 32 mod 31 = 1 ≠ 13 = 44 mod 31
m=32: 32 mod 32 = 0 ≠ 12 = 44 mod 32
2. (deutlich schnellere) Möglichkeit:
Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.
Somit müssen wir nur die Teiler von (44 - 32) = 12 bestimmen:
die gesuchten Zahlen sind somit:
2; 3; 4; 6; 12
