Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 66 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 64, weil ja 8 ⋅ 8 = 64 ist.

Also bleibt als Rest eben noch 66 - 64 = 2.

Somit gilt: 66 mod 8 ≡ 2.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 80 und 90 für die gilt n ≡ 73 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 70, weil ja 7 ⋅ 10 = 70 ist.

Also bleibt als Rest eben noch 73 - 70 = 3.

Somit gilt: 73 mod 10 ≡ 3.

Wir suchen also eine Zahl zwischen 80 und 90 für die gilt: n ≡ 3 mod 10.

Dazu suchen wir erstmal ein Vielfaches von 10 in der Nähe von 80, z.B. 80 = 8 ⋅ 10

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 10 , sondern ≡ 3 mod 10 sein, also addieren wir noch 3 auf die 80 und erhalten so 83.

Somit gilt: 83 ≡ 73 ≡ 3 mod 10.

Modulo addieren

Beispiel:

Berechne ohne WTR: (1004 + 504) mod 5.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(1004 + 504) mod 5 ≡ (1004 mod 5 + 504 mod 5) mod 5.

1004 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 1004 = 1000+4 = 5 ⋅ 200 +4.

504 mod 5 ≡ 4 mod 5 kann man relativ leicht bestimmen, weil ja 504 = 500+4 = 5 ⋅ 100 +4.

Somit gilt:

(1004 + 504) mod 5 ≡ (4 + 4) mod 5 ≡ 8 mod 5 ≡ 3 mod 5.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (23 ⋅ 89) mod 10.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(23 ⋅ 89) mod 10 ≡ (23 mod 10 ⋅ 89 mod 10) mod 10.

23 mod 10 ≡ 3 mod 10 kann man relativ leicht bestimmen, weil ja 23 = 20 + 3 = 2 ⋅ 10 + 3 ist.

89 mod 10 ≡ 9 mod 10 kann man relativ leicht bestimmen, weil ja 89 = 80 + 9 = 8 ⋅ 10 + 9 ist.

Somit gilt:

(23 ⋅ 89) mod 10 ≡ (3 ⋅ 9) mod 10 ≡ 27 mod 10 ≡ 7 mod 10.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
19 mod m = 25 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 19 aus, ob zufällig 19 mod m = 25 mod m gilt:

m=2: 19 mod 2 = 1 = 1 = 25 mod 2

m=3: 19 mod 3 = 1 = 1 = 25 mod 3

m=4: 19 mod 4 = 3 ≠ 1 = 25 mod 4

m=5: 19 mod 5 = 4 ≠ 0 = 25 mod 5

m=6: 19 mod 6 = 1 = 1 = 25 mod 6

m=7: 19 mod 7 = 5 ≠ 4 = 25 mod 7

m=8: 19 mod 8 = 3 ≠ 1 = 25 mod 8

m=9: 19 mod 9 = 1 ≠ 7 = 25 mod 9

m=10: 19 mod 10 = 9 ≠ 5 = 25 mod 10

m=11: 19 mod 11 = 8 ≠ 3 = 25 mod 11

m=12: 19 mod 12 = 7 ≠ 1 = 25 mod 12

m=13: 19 mod 13 = 6 ≠ 12 = 25 mod 13

m=14: 19 mod 14 = 5 ≠ 11 = 25 mod 14

m=15: 19 mod 15 = 4 ≠ 10 = 25 mod 15

m=16: 19 mod 16 = 3 ≠ 9 = 25 mod 16

m=17: 19 mod 17 = 2 ≠ 8 = 25 mod 17

m=18: 19 mod 18 = 1 ≠ 7 = 25 mod 18

m=19: 19 mod 19 = 0 ≠ 6 = 25 mod 19

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (25 - 19) = 6 bestimmen:

die gesuchten Zahlen sind somit:

2; 3; 6