Aufgabenbeispiele von Ebenen bestimmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Ebene aus Normalenvektor und Pkt

Beispiel:

Bestimme eine Koordinatengleichung der Ebene E, die den Normalenvektor ( -3 3 -1 ) hat und den Punkt P(0|-5|0) enthält.

Lösung einblenden

Da E den Normalenvektor n = ( -3 3 -1 ) besitzt, hat sie die Form E: -3 x 1 +3 x 2 - x 3 = d .

Da der Punkt P(0|-5|0) auf der gesuchten Ebene liegen soll, können wir diesen einfach einsetzen, um das d zu bestimmen.

-3 0 +3 ( - 5 ) -1 0 = d

0-15+0 = d

-15 = d

Die gesuchte Ebene hat somit die Gleichung E: -3 x 1 +3 x 2 - x 3 = -15 .

parallele Ebene durch Punkt

Beispiel:

Bestimme eine Koordinatengleichung der Ebene F, die parallel zur Ebene E: -3 x 1 +3 x 2 + x 3 = 6 ist und die den Punkt P(4|3|0) enthält.

Lösung einblenden

Jede zu E parallele Ebene hat den gleichen Normalenvektor n = ( -3 3 1 ) und damit die Form E: -3 x 1 +3 x 2 + x 3 = d .

Da der Punkt P(4|3|0) auf der gesuchten Ebene liegen soll, können wir diesen einfach einsetzen, um das d zu bestimmen.

-3 4 +3 3 +1 0 = d

-12+9+0 = d

-3 = d

Die gesuchte Ebene hat somit die Gleichung F: -3 x 1 +3 x 2 + x 3 = -3 .

Punktprobe in Ebene mit Parameter

Beispiel:

Für welches a liegt der Punkt P(5|-1|4) auf der Ebene E: - x 1 + x 2 +a x 3 = -22 ?

Lösung einblenden

Wir setzen einfach mal den Punkt P in E ein:

(-1)5 + 1(-1) + a4 = -22
-5+(-1)+a ⋅ 4 = -22 |+6
4a = -16 | :4
a = -4

Ebene aus orth. Geraden durch Punkt

Beispiel:

Bestimme eine Koordinatengleichung der Ebene E, die orthogonal zur Geraden g: x = ( 2 2 1 ) +t ( 5 -1 2 ) ist und die den Punkt P(-4|-4|-2) enthält.

Lösung einblenden

Wenn E orthogonal zur Geraden g ist, so kann man den Richtungsverktor von g als Normalenvektor n = ( 5 -1 2 ) der gesuchten Ebene verwenden. Dadurch ergibt sich für die Koordinatengleichung der Ebene E: 5 x 1 - x 2 +2 x 3 = d .

Da der Punkt P(-4|-4|-2) auf der gesuchten Ebene liegen soll, können wir diesen einfach einsetzen, um das d zu bestimmen.

5 ( - 4 ) -1 ( - 4 ) +2 ( - 2 ) = d

-20+4-4 = d

-20 = d

Die gesuchte Ebene hat somit die Gleichung F: 5 x 1 - x 2 +2 x 3 = -20 .

spezielle Ebenen

Beispiel:

Welche besondere Lage hat die Ebene E: +7 x 2 = 0 ?

Lösung einblenden

Der Normalenvektor der Ebene ist n = ( 0 7 0 ) , er steht also senkrecht auf der x1-x3-Ebene. Also muss die Ebene parallel zur x1-x3-Ebene sein.

Eine Punktprobe mit dem Ursprung O(0|0|0) zeigt, dass dieser auf der Ebene liegt. Also ist die Ebene die x1-x3-Ebene.

spezielle Ebenen aufstellen

Beispiel:

Bestimme die Koordinatengleichung einer Ebene, die parallel zur x2-Achse ist und den Punkt (1|2|2) beinhaltet.

Lösung einblenden

Da die gesuchte Ebende parallel zur x2-Achse sein muss, darf sie keinen Spurpunkt mit der x2-Achse haben, das heißt, wenn man 0 für x1 und x3 einsetzt, muss b=0 sein, damit die ganze linke Seite immer 0 ist; und die Gleichung so zu einem Widerspruch 0=d führt.

(ansonsten könnte man ja a0 + bx2 + c0=d zu x2= d b umformen und würde einen Spurpunkt mit der x2-Achse erhalten)

Der Koeffizient b vor x2 muss also 0 sein. Die Gleichung der Ebene lautet dann
a⋅x1 + c⋅x3=d.

Punkt P(1|2|2) eingesetzt:
a⋅1 + c⋅2=d

a=1;c=1 und d=3 ist eine (von unendlich vielen) Möglichkeiten für diese Gleichung.
x1 + x3=3 ist also eine zur x2-Achse parallele Ebene, in der auch der Punkt P(1|2|2) liegt.

spezielle Ebene in Parameterform

Beispiel:

Welche besondere Lage hat die Ebene E: x = ( -9 0 -2 ) + r ( -9 0 2 ) + s ( -5 0 1 ) ?

Lösung einblenden

1. Weg:

Man kann erkennen, dass - egal was man für r und s einsetzt - der x2-Wert immer 0 bleibt. Man kann die Ebene also auch in der Form als x2 = 0 als Koordinatenebene darstellen. (Damit ist dann der Normalenvektor n = ( 0 1 0 ) .)

E ist also die x1-x3-Ebene.

2. Weg:

Da beide Spannvektoren an der x2-Stelle den Wert 0 haben, kann man leicht den Normalenvektor n = ( 0 1 0 ) bestimmen. Damit muss die Ebene die Form x2=c haben. (Mit Punktprobe des Aufpunkts von E erkennt man dann ...)

E ist also die x1-x3-Ebene.

Parameter bestimmen, dass g in E liegt

Beispiel:

Bestimme a und b so, dass die Gerade g: x = ( 1 -2 2 ) +t ( -5 2 -3 ) komplett in der Ebene E: -5 x 1 +a x 2 +7 x 3 = b liegt.

Lösung einblenden

Wenn die Gerade g in E liegen soll, muss auch der Normalenvektor von E orthogonal zum Richtungsvektor von g sein, also muss gelten:

( -5 2 -3 ) ( -5 a 7 ) = 0

(-5)(-5) + 2a + (-3)7 = 0
25+a ⋅ 2+(-21) = 0 |-4
2a = -4 | :2
a = -2

Für a = -2 ist also g parallel zu E oder liegt in E.
E hat dann also die Koordinatengleichung E: -5 x 1 -2 x 2 +7 x 3 = b .
Wenn g in E liegen soll, muss ja jeder Punkt von g in E liegen, also auch der Aufpunkt (1|-2|2).

Wir müssen also nur den Aufpunkt (1|-2|2) in E: -5 x 1 -2 x 2 +7 x 3 = b einsetzen, um noch das b zu bestimmen.

-5 1 -2 ( - 2 ) +7 2 = b

-5+4+14 = b

13 = b

Mit b = 13 ergibt sich somit als Koordinatengleichung für E: -5 x 1 -2 x 2 +7 x 3 = 13 .

Parameter für Lage von 2 Ebenen bestimmen

Beispiel:

Gegeben sind die Ebenen E: 2 x 1 - x 2 - x 3 = -2 und F: a x 1 +2 x 2 +2 x 3 = b . Bestimme a und b so, dass die beiden Ebenen echt parallel sind.

Lösung einblenden

Wenn die beiden Ebenen parallel oder identisch sein sollen, müssen ihre Normalenvektoren vielfache (oder gleich) sein. Es muss also gelten:
( a 2 2 ) = t⋅ ( 2 -1 -1 )

Man erkennt nun gleich, dass dies nur für t = -2 möglich ist.

Daraus ergibt sich aber in der 1. Zeile: a = -2 ⋅ 2 = -4.

Für a = -4 sind die Ebenen also parallel oder sogar identisch, für F gilt also
F: -4 x 1 +2 x 2 +2 x 3 = b .

Wenn man nun die Gleichung der Ebene E mit t = -2 durchmultipliziert, so erhält man
E: -4 x 1 +2 x 2 +2 x 3 = 4 , d.h. für b = 4 sind die beiden Ebenen identisch.

Genau das wollen wir ja aber gerade nicht, deswegen können wir jeden beliebigen Wert für b ≠ 4, also z.B.: b = 5 setzen.