Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 65% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.65 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.35 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.35=(1-p)4

=>1-p=0.354 ≈ 0.7692

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.7692 ≈ 0.2308

Binomialvert. mit variablem n (höchst.)

Beispiel:

Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,8. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 90% nicht über 33 Freiwurfpunkte kommen lassen will?

Lösung einblenden
nP(X≤k)
......
380.9014
390.82
400.7141
410.5931
......

Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.

Es muss gelten: P0.8n (X33) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.8 ≈ 41 Versuchen auch ungefähr 33 (≈0.8⋅41) Treffer auftreten.

Wir berechnen also mit unserem ersten n=41:
P0.8n (X33) ≈ 0.5931 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=38 die gesuchte Wahrscheinlichkeit über 90% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 50 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 80% liegen. Wieviel der 50 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
61- 6 50 5 49 =1- 3 245 ≈0.9878
71- 7 50 6 49 =1- 3 175 ≈0.9829
81- 8 50 7 49 =1- 4 175 ≈0.9771
91- 9 50 8 49 =1- 36 1225 ≈0.9706
101- 10 50 9 49 =1- 9 245 ≈0.9633
111- 11 50 10 49 =1- 11 245 ≈0.9551
121- 12 50 11 49 =1- 66 1225 ≈0.9461
131- 13 50 12 49 =1- 78 1225 ≈0.9363
141- 14 50 13 49 =1- 13 175 ≈0.9257
151- 15 50 14 49 =1- 3 35 ≈0.9143
161- 16 50 15 49 =1- 24 245 ≈0.902
171- 17 50 16 49 =1- 136 1225 ≈0.889
181- 18 50 17 49 =1- 153 1225 ≈0.8751
191- 19 50 18 49 =1- 171 1225 ≈0.8604
201- 20 50 19 49 =1- 38 245 ≈0.8449
211- 21 50 20 49 =1- 6 35 ≈0.8286
221- 22 50 21 49 =1- 33 175 ≈0.8114
231- 23 50 22 49 =1- 253 1225 ≈0.7935
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=6 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 6 50 5 49 (beim ersten Zufallsversuch 6 50 und beim zweiten 5 49 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 6 50 5 49

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=6. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/50*(x-1)/49)

In dieser Tabelle erkennen wir, dass letztmals bei 22 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 22 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 3 rote und einige schwarze Kugeln. Es soll 20 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 20 gezogenen Kugeln nicht mehr als 6 rote sind?

Lösung einblenden
pP(X≤6)
......
3 10 0.608
3 11 0.7093
3 12 0.7858
3 13 0.8422
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=20 und unbekanntem Parameter p.

Es muss gelten: Pp20 (X6) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 3 sein muss, da es ja genau 3 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp20 (X6) ('höchstens 6 Treffer bei 20 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 6 20 . Mit diesem p wäre ja 6= 6 20 ⋅20 der Erwartungswert und somit Pp20 (X6) irgendwo in der nähe von 50%. Wenn wir nun p= 6 20 mit 3 6 erweitern (so dass wir auf den Zähler 3 kommen) und den Nenner abrunden, müssten wir mit p= 3 10 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 3 13 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 13 sein.

Also werden noch 10 zusätzliche Optionen (also schwarze Kugeln) benötigt.