Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
p gesucht (n-te Wurzel)
Beispiel:
Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 82% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)
P=0.82 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.18 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.
Es gilt also 0.18=(1-p)3
=>1-p= ≈ 0.5646
Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5646 ≈ 0.4354
Binomialvert. mit variablem n (höchst.)
Beispiel:
Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,08. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 70% kein Descepticon unter ihnen ist?
n | P(X≤k) |
---|---|
... | ... |
1 | 0.92 |
2 | 0.8464 |
3 | 0.7787 |
4 | 0.7164 |
5 | 0.6591 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.08 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 8% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.08⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=4 die gesuchte Wahrscheinlichkeit über 70% ist.
gesuchtes p (ohne zurücklegen)
Beispiel:
Bei einer Tombola sind 60 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 95% liegen. Wieviel der 60 Lose dürfen höchstens Nieten sein?
Anzahl der Nieten im Lostopf | P('höchstens eine Niete') |
---|---|
... | ... |
7 | 1-⋅=1-≈0.9881 |
8 | 1-⋅=1-≈0.9842 |
9 | 1-⋅=1-≈0.9797 |
10 | 1-⋅=1-≈0.9746 |
11 | 1-⋅=1-≈0.9689 |
12 | 1-⋅=1-≈0.9627 |
13 | 1-⋅=1-≈0.9559 |
14 | 1-⋅=1-≈0.9486 |
... | ... |
Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.
Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist): Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= ⋅ (beim ersten Zufallsversuch und beim zweiten weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1-⋅
Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/60*(x-1)/59)
In dieser Tabelle erkennen wir, dass letztmals bei 13 als 'Anzahl der Nieten im Lostopf' die gesuchte
Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 13 sein.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 95 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 75% für die 95 Durchgänge reichen?
p | P(X≤7) |
---|---|
... | ... |
0.5512 | |
0.6319 | |
0.7004 | |
0.7573 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=95 und unbekanntem Parameter p.
Es muss gelten: =0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 7 Treffer bei 95 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 7=⋅95 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens
16 sein.