Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 2 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 2 Durchgängen die Farbe 'blau' kommt, ist 0,4. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.4 ist die Wahrscheinlichkeit, dass 2 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.4=p2

=>p=0.42 ≈ 0.6325

Binomialvert. mit variablem n (mind)

Beispiel:

In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 87% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 60% Wahrscheinlichkeit in mindestens 5 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?

Lösung einblenden
nP(X≤k)
......
380.4394
390.4153
400.392
......

Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.13 und variablem n.

Es muss gelten: P0.13n (X5) ≥ 0.6

Weil man ja aber P0.13n (X5) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.13n (X5) = 1 - P0.13n (X4) ≥ 0.6 |+ P0.13n (X4) - 0.6

0.4 ≥ P0.13n (X4) oder P0.13n (X4) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 13% der Versuche mit einem Treffer. Also müssten dann doch bei 5 0.13 ≈ 38 Versuchen auch ungefähr 5 (≈0.13⋅38) Treffer auftreten.

Wir berechnen also mit unserem ersten n=38:
P0.13n (X4) ≈ 0.4394 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=40 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 40 sein, damit P0.13n (X4) ≤ 0.4 oder eben P0.13n (X5) ≥ 0.6 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 20 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 50% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 17 20 16 19 =1- 68 95 ≈0.2842
41- 16 20 15 19 =1- 12 19 ≈0.3684
51- 15 20 14 19 =1- 21 38 ≈0.4474
61- 14 20 13 19 =1- 91 190 ≈0.5211
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 17 20 16 19 (beim ersten Zufallsversuch 17 20 und beim zweiten 16 19 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 17 20 16 19

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(20-x)/20*(19-x)/19)

In dieser Tabelle erkennen wir, dass erstmals bei 6 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 50% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 6 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Ein neuer Multiple Choice Test mit 18 verschiedenen Fragen soll entwickelt werden. Dabei muss immer genau eine von mehreren Antwortmöglichkeiten richtig sein. Die Anzahl an Antwortmöglichkeiten soll bei allen Fragen gleich sein. Insgesamt soll der Test so konzipiert sein, dass die Wahrscheinlichkeit mehr als 2 Fragen nur durch Raten zufällig richtig zu beantworten (obwohl man keinerlei Wissen hat) bei höchstens 20% liegt. Bestimme die hierfür notwendige Mindestanzahl an Antwortmöglichkeiten bei jeder Frage.

Lösung einblenden
pP(X≤2)
......
1 9 0.677
1 10 0.7338
1 11 0.7788
1 12 0.8146
......

Die Zufallsgröße X gibt die Anzahl der zufällig richtig geratenenen Antworten an. X ist binomialverteilt mit n=18 und unbekanntem Parameter p.

Es muss gelten: Pp18 (X2) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp18 (X2) ('höchstens 2 Treffer bei 18 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 2 18 . Mit diesem p wäre ja 2= 2 18 ⋅18 der Erwartungswert und somit Pp18 (X2) irgendwo in der nähe von 50%. Wenn wir nun p= 2 18 mit 1 2 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 9 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 12 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Antwortmöglichkeiten, muss also mindestens 12 sein.