Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

An einem Glücksrad wird 4 mal gedreht. Die Wahrscheinlichkeit, dass bei allen 4 Durchgängen die Farbe 'blau' kommt, ist 0,5. Wie groß muss bei diesem Glücksrad die Wahrscheinlichkeit für das blaue Feld sein?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.5 ist die Wahrscheinlichkeit, dass 4 mal das Ereignis mit der Wahrscheinlichkeit p eintritt.

Es gilt also 0.5=p4

=>p=0.54 ≈ 0.8409

Binomialvert. mit variablem n (mind)

Beispiel:

Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 70% mindestens 2 Überraschung(en) zu erhalten.

Lösung einblenden
nP(X≤k)
......
140.3851
150.3466
160.3113
170.2789
......

Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = 1 7 und variablem n.

Es muss gelten: P 1 7 n (X2) ≥ 0.7

Weil man ja aber P 1 7 n (X2) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 7 n (X2) = 1 - P 1 7 n (X1) ≥ 0.7 |+ P 1 7 n (X1) - 0.7

0.3 ≥ P 1 7 n (X1) oder P 1 7 n (X1) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 7 der Versuche mit einem Treffer. Also müssten dann doch bei 2 1 7 ≈ 14 Versuchen auch ungefähr 2 (≈ 1 7 ⋅14) Treffer auftreten.

Wir berechnen also mit unserem ersten n=14:
P 1 7 n (X1) ≈ 0.3851 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=17 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 17 sein, damit P 1 7 n (X1) ≤ 0.3 oder eben P 1 7 n (X2) ≥ 0.7 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einer Urne sind 20 Kugeln. Alle Kugeln sind entweder rot oder schwarz. Es sollen 2 Kugeln gleichzeitig gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 75% unter den beiden gezogenen Kugeln mindestens eine schwarze ist?

Lösung einblenden
Anzahl der schwarzen Kugeln in der UrneP('mindestens eine schwarze Kugel')
......
31- 17 20 16 19 =1- 68 95 ≈0.2842
41- 16 20 15 19 =1- 12 19 ≈0.3684
51- 15 20 14 19 =1- 21 38 ≈0.4474
61- 14 20 13 19 =1- 91 190 ≈0.5211
71- 13 20 12 19 =1- 39 95 ≈0.5895
81- 12 20 11 19 =1- 33 95 ≈0.6526
91- 11 20 10 19 =1- 11 38 ≈0.7105
101- 10 20 9 19 =1- 9 38 ≈0.7632
......

Gesucht ist die Wahrscheinlichkeit von 'mindestens eine schwarze Kugel'.

Das Gegenereignis ('keine schwarze Kugel') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der schwarzen Kugeln in der Urne=3 ist, dann ist doch die Wahrscheinlichkeit für 'keine schwarze Kugel'= 17 20 16 19 (beim ersten Zufallsversuch 17 20 und beim zweiten 16 19 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'mindestens eine schwarze Kugel'=1- 17 20 16 19

Wir erhöhen nun schrittweise immer die Anzahl der schwarzen Kugeln in der Urne um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'mindestens eine schwarze Kugel' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=3. (man kann auch alles als Funktion in den WTR eingeben: y=1-(20-x)/20*(19-x)/19)

In dieser Tabelle erkennen wir, dass erstmals bei 10 als 'Anzahl der schwarzen Kugeln in der Urne' die gesuchte Wahrscheinlichkeit über 75% auftritt.
Die gesuchte Anzahl der schwarzen Kugeln in der Urne muss also mindestens 10 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 8 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 85 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 8 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 85 Durchgänge reichen?

Lösung einblenden
pP(X≤8)
......
1 10 0.5195
1 11 0.6325
1 12 0.7236
1 13 0.7942
1 14 0.8475
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=85 und unbekanntem Parameter p.

Es muss gelten: Pp85 (X8) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp85 (X8) ('höchstens 8 Treffer bei 85 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 8 85 . Mit diesem p wäre ja 8= 8 85 ⋅85 der Erwartungswert und somit Pp85 (X8) irgendwo in der nähe von 50%. Wenn wir nun p= 8 85 mit 1 8 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 10 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 14 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 14 sein.