Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Ein Basketballtrainer sucht einen Spieler, bei dem die Wahrscheinlichkeit von 3 Versuchen mindestens einmal zu treffen bei 82% liegt. Wie hoch muss dann seine Trefferquote sein? (Gib diese als Wahrscheinlichkeit zwischen 0 und 1 an)
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.82 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 3 Durchgängen, also ist 1-P=0.18 die Wahrscheinlichkeit für keinen Treffer bei bei 3 Durchgängen.

Es gilt also 0.18=(1-p)3

=>1-p=0.183 ≈ 0.5646

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.5646 ≈ 0.4354

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,08. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 70% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.92
20.8464
30.7787
40.7164
50.6591
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.08 und variablem n.

Es muss gelten: P0.08n (X0) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 8% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.08 ≈ 0 Versuchen auch ungefähr 0 (≈0.08⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.08n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=4 die gesuchte Wahrscheinlichkeit über 70% ist.

gesuchtes p (ohne zurücklegen)

Beispiel:

Bei einer Tombola sind 60 Lose im Topf. Darunter sind auch einige Nieten. Um die Käufer nicht zu verärgern soll die Wahrscheinlichkeit, dass von 2 gleichzeitig gezogenen Losen höchstens eines davon eine Niete ist, bei mindestens 95% liegen. Wieviel der 60 Lose dürfen höchstens Nieten sein?

Lösung einblenden
Anzahl der Nieten im LostopfP('höchstens eine Niete')
......
71- 7 60 6 59 =1- 7 590 ≈0.9881
81- 8 60 7 59 =1- 14 885 ≈0.9842
91- 9 60 8 59 =1- 6 295 ≈0.9797
101- 10 60 9 59 =1- 3 118 ≈0.9746
111- 11 60 10 59 =1- 11 354 ≈0.9689
121- 12 60 11 59 =1- 11 295 ≈0.9627
131- 13 60 12 59 =1- 13 295 ≈0.9559
141- 14 60 13 59 =1- 91 1770 ≈0.9486
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens eine Niete'.

Das Gegenereignis ('genau zwei Nieten') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Nieten im Lostopf=7 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Nieten'= 7 60 6 59 (beim ersten Zufallsversuch 7 60 und beim zweiten 6 59 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens eine Niete'=1- 7 60 6 59

Wir erhöhen nun schrittweise immer die Anzahl der Nieten im Lostopf um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens eine Niete' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=7. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/60*(x-1)/59)

In dieser Tabelle erkennen wir, dass letztmals bei 13 als 'Anzahl der Nieten im Lostopf' die gesuchte Wahrscheinlichkeit über 95% auftritt.
Die gesuchte Anzahl der Nieten im Lostopf darf also höchstens 13 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 95 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 75% für die 95 Durchgänge reichen?

Lösung einblenden
pP(X≤7)
......
1 13 0.5512
1 14 0.6319
1 15 0.7004
1 16 0.7573
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=95 und unbekanntem Parameter p.

Es muss gelten: Pp95 (X7) =0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp95 (X7) ('höchstens 7 Treffer bei 95 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 7 95 . Mit diesem p wäre ja 7= 7 95 ⋅95 der Erwartungswert und somit Pp95 (X7) irgendwo in der nähe von 50%. Wenn wir nun p= 7 95 mit 1 7 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 13 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 16 die gesuchte Wahrscheinlichkeit über 75% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 16 sein.