Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


p gesucht (n-te Wurzel)

Beispiel:

Bei einer Tombola werden elektronische Lose so verkauft, dass bei jedem Los jede Preiskategorie immer die gleiche Gewinnwahrscheinlichkeit hat. Aus Marketinggründen wird dabei auch ein Vierer-Pack angeboten. Dabei wird geworben, dass mit einer Wahrscheinlichkeit von 58% bei jedem Viererpack mindestens ein hochwertiger Preis dabei ist. Wie hoch muss man die Einzelwahrscheinlichkeit für einen hochwertigen Preis setzen, damit dieses Versprechen eingehalten wird?
(Bitte auf 3 Stellen runden!)

Lösung einblenden

P=0.58 ist die Wahrscheinlichkeit für mindestens 1 Treffer bei bei 4 Durchgängen, also ist 1-P=0.42 die Wahrscheinlichkeit für keinen Treffer bei bei 4 Durchgängen.

Es gilt also 0.42=(1-p)4

=>1-p=0.424 ≈ 0.805

Die gesuchte Einzelwahrscheinlichkeit p ist dann also 1-0.805 ≈ 0.195

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,25. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 70% 32 mal oder öfters in den grünen Bereich zu kommen?

Lösung einblenden
nP(X≤k)
......
1320.3875
1330.3686
1340.3502
1350.3323
1360.3148
1370.2978
......

Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.25 und variablem n.

Es muss gelten: P0.25n (X32) ≥ 0.7

Weil man ja aber P0.25n (X32) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.25n (X32) = 1 - P0.25n (X31) ≥ 0.7 |+ P0.25n (X31) - 0.7

0.3 ≥ P0.25n (X31) oder P0.25n (X31) ≤ 0.3

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 25% der Versuche mit einem Treffer. Also müssten dann doch bei 32 0.25 ≈ 128 Versuchen auch ungefähr 32 (≈0.25⋅128) Treffer auftreten.

Wir berechnen also mit unserem ersten n=128:
P0.25n (X31) ≈ 0.4661 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.3 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.3 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=137 die gesuchte Wahrscheinlichkeit unter 0.3 ist.

n muss also mindestens 137 sein, damit P0.25n (X31) ≤ 0.3 oder eben P0.25n (X32) ≥ 0.7 gilt.

gesuchtes p (ohne zurücklegen)

Beispiel:

In einem Kartenstapel mit 26 Karten sind auch einige Joker-Karten drin. Wenn man 2 Karten gleichzeitig aus dem Stapel zieht, soll mit 80%-iger Wahrscheinlichkeit höchstens eine Jokerkarte dabei sein liegen. Wie viele Jokerkarten dürfen maximal in dem Stapel drin sein?

Lösung einblenden
Anzahl der Joker im KartenstapelP('höchstens einen Joker')
......
41- 4 26 3 25 =1- 6 325 ≈0.9815
51- 5 26 4 25 =1- 2 65 ≈0.9692
61- 6 26 5 25 =1- 3 65 ≈0.9538
71- 7 26 6 25 =1- 21 325 ≈0.9354
81- 8 26 7 25 =1- 28 325 ≈0.9138
91- 9 26 8 25 =1- 36 325 ≈0.8892
101- 10 26 9 25 =1- 9 65 ≈0.8615
111- 11 26 10 25 =1- 11 65 ≈0.8308
121- 12 26 11 25 =1- 66 325 ≈0.7969
......

Gesucht ist die Wahrscheinlichkeit von 'höchstens einen Joker'.

Das Gegenereignis ('genau zwei Joker') ist sehr viel einfacher zu berechnen (weil dies nur ein Pfad im Baumdiagramm ist):
Wenn beispielsweise die Anzahl der Joker im Kartenstapel=4 ist, dann ist doch die Wahrscheinlichkeit für 'genau zwei Joker'= 4 26 3 25 (beim ersten Zufallsversuch 4 26 und beim zweiten 3 25 weil dann ja bereits 'eine Kugel weniger im Topf ist'), also ist die Wahrscheinlichkeit für 'höchstens einen Joker'=1- 4 26 3 25

Wir erhöhen nun schrittweise immer die Anzahl der Joker im Kartenstapel um 1 und probieren aus, wie sich das auf die gesuchte Gesamt-Wahrscheinlichkeit für 'höchstens einen Joker' auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p=4. (man kann auch alles als Funktion in den WTR eingeben: y=1-x/26*(x-1)/25)

In dieser Tabelle erkennen wir, dass letztmals bei 11 als 'Anzahl der Joker im Kartenstapel' die gesuchte Wahrscheinlichkeit über 80% auftritt.
Die gesuchte Anzahl der Joker im Kartenstapel darf also höchstens 11 sein.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 27 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 27 gezogenen Kugeln nicht mehr als 24 schwarze sind?

Lösung einblenden
pP(X≤24)
......
8 13 0.9997
9 14 0.9992
10 15 0.9982
11 16 0.9965
12 17 0.994
13 18 0.9903
14 19 0.9855
15 20 0.9793
16 21 0.9717
17 22 0.9627
18 23 0.9525
19 24 0.9409
20 25 0.9282
21 26 0.9144
22 27 0.8997
23 28 0.8842
24 29 0.868
25 30 0.8512
26 31 0.834
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=27 und unbekanntem Parameter p.

Es muss gelten: Pp27 (X24) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp27 (X24) ('höchstens 24 Treffer bei 27 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 8 13 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 25 30 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 25 sein.