Aufgabenbeispiele von Normalverteilung

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Intervall Normalverteilung (einfach)

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=1 und der Standardabweichung σ=2 .

Berechne P(X ≥ 1).

Runde dein Ergebnis auf 3 Stellen hinter dem Komma.

Lösung einblenden

Hier kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die rechte Intervallgrenze wäre hier jedoch + ∞. Stattdessen kann man einfach einen sehr großen Wert eingeben, z.B.: 10000000.

Jetzt kann man das Ergebnis ablesen: P(X ≥ 1) ≈ 0.5

Intervall Normalverteilung rückwärts

Beispiel:

Die Zufallsgröße X ist normalverteilt mit dem Erwartungswert μ=20 und der Standardabweichung σ=5.5 .

Es gilt P(X ≥ k) = 0.65. Bestimme k.

Runde auf eine Stelle hinter dem Komma genau.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der WTR kann leider kein k berechnen mit P(X ≥ k) = 0.65, weil er immer nur ein k bei P(X ≤ k) = p berechnen kann.

Also nutzen wir aus, dass P(X ≤ k) = 0.35 (im Schaubild die blaue Fläche) gelten muss, wenn P(X ≥ k) = 0.65 (im Schaubild die rote Fläche) gilt.

Für P(X ≤ k) = 0.35 liefert der WTR k ≈ 17.881.

(TI: invNormal, Casio: Inv. Normal-V. )

Normalverteilung Anwendung

Beispiel:

Ein exotisches Insekt wird im Mittel 2 cm lang. Dabei beträgt die Standardabweichung der Körperlänge 1,1 cm.Bestimme die Wahrscheinlichkeit, dass ein zufällig gewähltes Insekt kleiner oder gleich 2 cm ist.
(Bitte auf 3 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X beschreibt die Körperlänge des Insekts im cm, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 2 und der Standardabweichung σ = 1.1.

Somit kann man einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: Erst μ und σ, dann die Intervallgrenzen eingeben. Die linke Intervallgrenze wäre hier jedoch - ∞. Stattdessen kann man einfach einen sehr kleinen Wert eingeben, z.B.: -10000000.

Jetzt lässt sich das Ergebnis ablesen: P(X ≤ 2) ≈ 0.5

Normalverteilung Anwendung (rückwärts)

Beispiel:

Man geht davon aus, dass die Intelligenz bei Menschen normalverteilt ist. Ein Intelligenztest wird immer so skaliert, dass der Erwartungswert des IQ bei 100 und die Standardabweichung bei 15 liegt. Welchen IQ darf man höchstens haben, um zu den dümmsten 30% der Bevölkerung zu gehören.
(Bitte auf 2 Stellen nach dem Komma runden, ohne Einheiten eingeben!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X beschreibt den Intelligenzquotient IQ, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 100 und der Standardabweichung σ = 15.

Gesucht ist somit das k, so dass P(X ≤ k) = 0.3 gilt.

Der WTR liefert für P(X ≤ k) = 0.3 den Wert k ≈ 92.134.

(TI: invNormal, Casio: Inv. Normal-V. )

Mittelwert, Standardabw. ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an.

Lösung einblenden

Den Mittelwert μ= 3 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 5 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

Dichtefunktion aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib den Funktionsterm der Dichtefunktion an.

Lösung einblenden

Den Mittelwert μ= -1 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 5 kann man am Abstand der x-Werte des Hochpunkts vom Wendepunkt ablesen.

Eingesetzt in die allgemeine Dichtefunktion: φ(x) = 1 σ · 2π · e - 1 2 ( x - μ σ ) 2 ergibt:

φ(x) = 1 5 2π · e - 1 2 ( x +1 5 ) 2

μ und σ ablesen und Intervall berechnen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit den ganzzahligen Parametern μ und σ.

Gib die Werte für μ und σ an und berechne damit die eingefärbte Fläche.

Lösung einblenden

Den Mittelwert μ= 4 kann man einfach am x-Wert des Hochpunkts der Glockenkurve ablesen.

Die Standardabweichung σ = 2 kann man am Abstand der x-Werte von Hochpunkt und Wendepunkt ablesen.

Jetzt kann man einfach einfach die WTR-Befehle ("Normalcdf" beim TI, bzw. "Kumul. Normal-V" beim Casio) verwenden: μ und σ, dann die Intervallgrenzen eingeben - und schließlich das Ergebnis ablesen:

P(1 ≤ X ≤ 5) ≈ 0.6247

Symmetrie nutzen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Zufallsgröße X ist normalverteilt. Ihr Schaubild zeigt die zugehörige Gauß'sche Glockenkurve mit einem ganzzahligen Erwartungswert μ. Der Inhalt der gefärbten Fläche beträgt 0.266.

Bestimme P(-5 ≤ X ≤ -3).

Gib die Wahrscheinlichkeit auf 3 Stellen nach dem Komma genau an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir wissen, dass das Schaubild einer normalverteilten Zufallsgröße achsenssymmetrisch zur senkrechten Gerade durch den Hochpunkt ist, hier also zu x = -4.

Somit gilt auch für den helleren blauen Flächeninhalt, der der Wahrscheinlichkeit P( X ≥ -3) entspricht: P( X ≥ -3) = 0.266.

Für die roten Fläche(n) ergibt sich dann die Restwahrscheinlichkeit:
1 - 0.266 - 0.266 = 0.468,

also P(-5 ≤ X ≤ -3) = 0.468

Standardabweichung bestimmen

Beispiel:

Der Punkt P(-3|0.0199) liegt auf der Gauß'schen Glockenkurve mit ganzzahligem Parameter σ und μ = -3.

Bestimme die Standardabweichung σ.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Der gegebene Punkt ist der Hochpunkt der Gauß' schen Glockenkurve, weil ja der gegebene x-Wert gerade dem Erwartungswert μ = -3 entspricht.

Um einen ersten möglichen Wert für eine Standardabweichung σ zu bekommen, berechen wir am besten den Quotient von 0,5 und dem y-Wert der gegebenen Hochpunkts, also 0.5 0.0199 ≈ 25.126 und runden diesen auf σ1 = 25.

Damit berechnen wir nun den y-Wert der Glockenkurve (mit μ = -3 und σ1=25) an der gegebenen Stelle x = -3 und erhalten f1(-3) = 0.016
(TI: DISTR -> 1: Normalpdf; Casio: Dichte ..).

Wir wissen ja: Je größer das σ ist, desto breiter wird die Glockenkurve. Da ja aber die ganze Fläche unter der Glockenkurve (die ja der Gesamt-Wahrscheinlichkeit für alles entspricht) immer genau 1 ist, muss die breitere Glockenkurve dementsprechend auch flacher und damit mit einem niedrigeren Hochpunkt ausfallen. Somit gilt:

Je höher das σ, desto niedriger der y-Wert des Hochpunkts.

Und da der y-Wert unserer ersten Kurve mit σ1=25 (in der Abbilung in grün) zu tief war, muss also σ1 zu groß sein und wir müssen jetzt eben schrittweise kleinere Standardabweichungen σ durchprobieren und die zugehörigen y-Werte an der Stelle x = -3 berechnen:

μ = -3σ = 24f(-3) = 0.0166
μ = -3σ = 23f(-3) = 0.0173
μ = -3σ = 22f(-3) = 0.0181
μ = -3σ = 21f(-3) = 0.019
μ = -3σ = 20f(-3) = 0.0199

Somit muss die gesuchte Standardabweichung σ = 20 sein.

Sigmaregel rückwärts

Beispiel:

X ist normalverteilt mit μ = 200 und σ. Es gilt P(200 ≤ X ≤ 242) ≈ 0,4985. Bestimme σ.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Es gilt: P(200 ≤ X ≤ 242) ≈ 0,4985
oder anders ausgedrückt:
P(μ ≤ X ≤ μ + 42) ≈ 0.997 2

Wegen der Symmetrie der Gauß'schen Glockenkurve gilt dann:
P(μ - 42 ≤ X ≤ μ + 42) ≈ 0,997

Aufgrund der Sigma-Regel P(μ - 3⋅σ ≤ X ≤ μ - 3⋅σ) ≈ 0.997
muss also 3⋅σ = 42 sein.

Für die Standardabweichung gilt somit: σ = 14 .

variabler Erwartungswert (Anwendungen)

Beispiel:

Bei einer Getränkeabfüllanlage kann man die Füllmenge der Flaschen auf ganze ml einstellen. Trotzdem ist dann nicht in allen abgefüllten Flaschen ganz exakt gleich viel drin. Man kann aber davon ausgehen, dass die tatsächliche Füllmenge normalverteilt ist mit der eingestellten Füllmenge als Erwartungswert und einer Standardabweichung von 1,5 ml. Auf welchen Wert (ganzzahlig in ml) muss man die Abfüllanlage mindestens einstellen, damit in einer zufällig abgefüllten Flasche mit einer Wahrscheinlichkeit von mindestens 75% mindestens 600 ml drin ist?

Lösung einblenden

Die Zufallsgröße X beschreibt die Abfüllmenge in ml.

Zunächst untersuchen wir die Wahrscheinlichkeit, wenn der Erwartungswert μ = 600 gewählt würde. Aus Symmetriegründen wäre dann aber P(X ≥ 600) = 0,5.

Deswegen wird nun der Erwartungswert schrittweise immer um eine Einheit erhöht, bis die gesuchte Wahrscheinlichkeit P(X ≥ 600) mindestens 0.75 ist:

μ = 600: P(X ≥ 600) = 0.5

μ = 601: P(X ≥ 600) = 0.7475

μ = 602: P(X ≥ 600) = 0.9088

Man muss also den Erwartungswert auf mindestens μ = 602 einstellen.

Normalverteilung variables σ

Beispiel:

Eine Getränkeabfüllanlage füllt Flaschen der Füllmenge 700 ml ab. Trotzdem ist dann nicht in allen abgefüllten Flaschen ganz exakt gleich viel drin. Man kann aber davon ausgehen, dass die tatsächliche Füllmenge normalverteilt ist mit μ = 700 als Erwartungswert und einer Standardabweichung σ. Die Vorgabe für die Abfüllanlage ist, dass die Füllmenge einer zufällig abgefüllten Flasche mit einer Wahrscheinlichkeit von höchstens 20% um mehr als 4 ml von den geforderten 700 ml abweicht. Wie groß darf dann die Standardabweichung von der Normalverteilung der Abfüllanlage (auf eine Stelle hinter dem Komma gerundet) höchtens sein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Abfüllmenge in ml.

Gesucht ist die Standardabweichung σ, so dass P(X ≤ 696) + P(X ≥ 704) < 20% oder eben, dass P(696 ≤ X ≤ 704) ≥ 0.8 gilt.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Je kleiner das σ ist, desto enger und höher ist die Glockenkurve der Dichtefunktion.

Aufgrund der Sigmaregel (P(μ-2σ ≤ X ≤ μ+2σ) ≈ 95,4% ) wissen wir, dass die 4 ml eine kleinere Wahrscheinlichkeit auf sich vereinen als eine Abweichung um 2 σ, folglich muss die Abweichung 4 weniger als 2 σ entsprechen.

4 < 2⋅σ |:2
2 < σ

Wir starten also mal bei σ = 2 und erhöhen dieses so lange, bis P(696 ≤X ≤ 704) unter die 0.8 sinkt:

σ = 2: P(696 ≤ X ≤ 704) ≈ 0.9545

σ = 2.1: P(696 ≤ X ≤ 704) ≈ 0.9432

...

σ = 2.9: P(696 ≤ X ≤ 704) ≈ 0.8322

σ = 3: P(696 ≤ X ≤ 704) ≈ 0.8176

σ = 3.1: P(696 ≤ X ≤ 704) ≈ 0.8031

σ = 3.2: P(696 ≤ X ≤ 704) ≈ 0.7887

Die Standardabweichung darf also höchstens σ = 3.1 einstellen.

variabler Erwartungswert (Anwendungen)

Beispiel:

Bei einer Maschine, die Schrauben herstellt, kann man die Länge der Schrauben auf ganze mm einstellen. Trotzdem sind dann nicht alle produzierten Schrauben ganz exakt gleich lang. Man kann aber davon ausgehen, dass die Schraubenlänge normalverteilt ist mit der eingestellten Länge als Erwartungswert und einer Standardabweichung von 1,5 mm. Auf welchen Wert (ganzzahlig in mm) muss man die Maschine mindestens einstellen, wenn eine zufällig gewählte Schraube mit einer Wahrscheinlichkeit von mindestens 90% mindestens 70 mm lang sein soll?

Lösung einblenden

Die Zufallsgröße X beschreibt die Schraubenlänge in mm.

Zunächst untersuchen wir die Wahrscheinlichkeit, wenn der Erwartungswert μ = 70 gewählt würde. Aus Symmetriegründen wäre dann aber P(X ≥ 70) = 0,5.

Deswegen wird nun der Erwartungswert schrittweise immer um eine Einheit erhöht, bis die gesuchte Wahrscheinlichkeit P(X ≥ 70) mindestens 0.9 ist:

μ = 70: P(X ≥ 70) = 0.5

μ = 71: P(X ≥ 70) = 0.7475

μ = 72: P(X ≥ 70) = 0.9088

Man muss also den Erwartungswert auf mindestens μ = 72 einstellen.

Kombination Normal- und Binomialverteilung

Beispiel:

Die Äpfel einer großen Plantage haben in einem bestimmten Jahr im Durchschnitt 9,5 cm als maximalen Durchmesser und eine Standardabweichung von 2 cm. Der Großhandel nimmt nur Äpfel an, die zwischen 8 und 11 cm groß sind. Wie groß ist die Wahrscheinlichkeit, dass von den 80 Äpfel eines Erntehelfers mindestens 40 Stück in den Großhandel kommen?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein zufällig gewählter Apfel im geforderten Größenbereich liegt. Die Zufallsgröße Y beschreibt dabei den maximalen Durchmessers eines Apfels, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 9.5 und der Standardabweichung σ = 2.

Mit derm WTR lässt sich so P(8 ≤ Y ≤ 11) ≈ 0.5467 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes der 80 Exemplare gilt, können wir die Zufallsgröße X (, die die Anzahl der Äpfel im geforderten Größenbereich zählt) als binomialverteilt mit n = 80 und p = 0.5467 annehmen.

Für die gesuchte Wahrscheinlichkeit gilt somit:
P0.54780 (X40) =

1 - P0.54780 (X39) ≈ 1 - 0.1704 = 0.8296

(TI-Befehl: binomcdf(80,0.5467,80) - binomcdf(80,0.5467,39))

Die gesuchte Wahrscheinlichkeit beträgt somit ca. 83%.

Kombination Normal- und Binomialverteilung rw

Beispiel:

Die Äpfel einer großen Plantage haben in einem bestimmten Jahr im Mittel einen "Durchmesser" von 10 cm und eine Standardabweichung von 2 cm. Der Großhandel nimmt nur Äpfel an, die zwischen 8 und 11 cm groß sind. Wie viele Äpfel muss man mindestens ernten, um mit einer Wahrscheinlichkeit von mindestens 75% mindestens 72 Stück an den Großhandel verkaufen zu können?

Lösung einblenden

Zuerst berechnen wir die Wahrscheinlichkeit dafür, dass ein zufällig gewählter Apfel im geforderten Größenbereich liegt. Die Zufallsgröße Y beschreibt dabei den Durchmessers eines Apfels, sie wird als normalverteilt angenommen mit dem Erwartungswert μ = 10 und der Standardabweichung σ = 2.

Mit derm WTR lässt sich so P(8 ≤ Y ≤ 11) ≈ 0.532807 berechnen.

(TI: Normalcdf, Casio: Kumul. Normal-V. )

Und weil dies für jedes Exemplar gilt, können wir die Zufallsgröße X (, die die Anzahl der Äpfel im geforderten Größenbereich zählt) als binomialverteilt mit unbekanntem n und p = 0.532807 annehmen.

nP(X≤k)
......
1370.3984
1380.3642
1390.3312
1400.2998
1410.27
1420.2419
......

Die Zufallsgröße X gibt Äpfel im geforderten Größenbereich an und ist im Idealfall binomialverteilt mit p = 0.532807 und variablem n.

Es muss gelten: P0.533n (X72) ≥ 0.75

Weil man ja aber P0.533n (X72) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.533n (X72) = 1 - P0.533n (X71) ≥ 0.75 |+ P0.533n (X71) - 0.75

0.25 ≥ P0.533n (X71) oder P0.533n (X71) ≤ 0.25

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 53.2807% der Versuche mit einem Treffer. Also müssten dann doch bei 72 0.532807 ≈ 135 Versuchen auch ungefähr 72 (≈0.532807⋅135) Treffer auftreten.

Wir berechnen also mit unserem ersten n=135:
P0.533n (X71) ≈ 0.4698 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.25 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.25 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=142 die gesuchte Wahrscheinlichkeit unter 0.25 ist.

n muss also mindestens 142 sein, damit P0.533n (X71) ≤ 0.25 oder eben P0.533n (X72) ≥ 0.75 gilt.