Aufgabenbeispiele von Körper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Volumeneinheiten umrechnen

Beispiel:

Wandle das Volumen in die angegebene Einheit um: 363 m³ = ..... dm³

Lösung einblenden
Die korrekte Antwort lautet:
363 m³ = 363000 dm³

Raumeinheiten verrechnen

Beispiel:

Berechne und gib das Ergebnis in cm³ an:

108 l - 560 cm³

Lösung einblenden

Als erstes ersetzen wir die Liter (l) durch dm³ :

108 dm³ - 560 cm³

Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:

108 dm³ = 108000 cm³

Jetzt können wir die beiden Werte gut verrechnen:

108 dm³ - 560 cm³
= 108000 cm³ - 560 cm³
= 107440 cm³

Volumen - Masse bei Wasser

Beispiel:

Ein Kubikzentimeter Wasser wiegt ein Gramm.

Wie viel wiegen 7000 cm³ Wasser ?

Lösung einblenden

7000 cm³ = 7 dm³

1 cm³ ≙ 1 g
1000 cm³ ≙ 1000 g
also 1 dm³ ≙ 1 kg

Somit wiegen 7 dm³ Wasser eben 7 kg

Volumen eines Quaders

Beispiel:

Ein Quader ist 10 m lang, 6 m breit und 7 m hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 10 m ⋅ 6 m ⋅ 7 m
= 420 m³

Quadervolumen offen

Beispiel:

Ein Quader ist hat das Volumen 24 m³. Jede der drei Kantenlänge ist größer als 1 m.

Bestimme mögliche Kantenlängen a, b und c.

Lösung einblenden

Mögliche Werte wären z.B.:
a = 2 m
b = 2 m
c = 6 m,
denn V = a ⋅ b ⋅ c = 2 m ⋅ 2 m ⋅ 6 m = 24 m³.

Volumen auch rückwärts

Beispiel:

Ein Quader ist 10 m lang, 5 m breit und 4 m hoch. Bestimme das Volumen V des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:

V = a ⋅ b ⋅ c
= 10 m ⋅ 5 m ⋅ 4 m
= 200 m³

Oberfläche eines Quaders

Beispiel:

Ein Quader ist 9 m lang, 6 m breit und 10 m hoch. Bestimme die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅9 m⋅6 m + 2⋅9 m⋅10 m + 2⋅6 m⋅10 m
= 108 m² + 180 m² + 120 m²
= 408 m²

Volumen auch rückwärts + Oberfl.

Beispiel:

Ein Quader ist 4 cm lang, 4 cm hoch und hat das Volumen V = 160 cm³. Bestimme die Breite b und die Oberfläche O des Quaders.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das Volumen eines Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c

Also gilt: 160 cm³ = 4 cm ⋅ ⬜ ⋅ 4 cm

160 cm³ = ⬜ ⋅ 16 cm²

Das Kästchen kann man also mit 160 cm³ : 16 cm² = 10 cm berechnen.

Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):

O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅4 cm⋅4 cm + 2⋅4 cm⋅10 cm + 2⋅4 cm⋅10 cm
= 32 cm² + 80 cm² + 80 cm²
= 192 cm²

Würfel V+O rückwärts

Beispiel:

Ein Würfel hat die Oberfläche O = 2400 dm². Berechne die Kantenlänge.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Ein Würfel hat ja sechs gleich große Seitenflächen. Jede davon ist ein Quadrat mit der Kantenlänge a.
Also gilt für die Oberfläche eines Würfel mit Kantenlänge a:
O = 6 ⋅ a ⋅ a = 6a2

Es gilt somit:

2400 dm² = 6 ⋅ ⬜2

Wenn 6 ⬜2 das Gleiche wie 2400 ist, dann muss doch ein ⬜2 ein Sechstel von 2400, also 400 ergeben.

400 dm² = ⬜2

Mit gezieltem Probieren findet man, dass dies mit a = 20 dm funktioniert.

Schrägbild zeichnen

Beispiel:

Zeichne in ein Koordinatensystem die Eckpunkte A(1|3), B(5|3), C(8|6) und G(8|9) ein und verbinde diese der Reihe nach.

Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 4 Einheiten (oder 8 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(8-4|6) = D(4|6).

An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 9-6 = 3. Somit muss auch der Punkt E genau 3 Einheiten über dem Punkt A(1|3) liegen, also bei E(1|3+3) = E(1|6).

Gleiches gilt auch für den Punkt F, der genau 3 Einheiten über dem Punkt B(5|3) liegen muss, also bei F(5|3+3) = F(5|6).

Gleiches gilt auch für den Punkt H, der genau 3 Einheiten über dem Punkt D(4|6) liegen muss, also bei H(4|6+3) = H(4|9).