Aufgabenbeispiele von Körper
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Volumeneinheiten umrechnen
Beispiel:
Wandle das Volumen in die angegebene Einheit um: 4030000000 cm³ = ..... m³
4030000000 cm³ = 4030 m³
Raumeinheiten verrechnen
Beispiel:
Berechne und gib das Ergebnis in cm³ an:
590 cm³ + 64 m³
Um die beiden Werte miteinander verrechnen zu können, rechnen wir erst mal den Wert mit der größeren Einheit in die kleinere Einheit um:
64 m³ = 64000 dm³ = 64000000 cm³
Jetzt können wir die beiden Werte gut verrechnen:
590 cm³ + 64 m³
= 590 cm³ + 64000000 cm³
= 64000590 cm³
Volumen - Masse bei Wasser
Beispiel:
Ein Kubikzentimeter Wasser wiegt ein Gramm.
Wie viel wiegen 11 m³ Wasser ?
1 cm³ ≙ 1 g
1 000 000 cm³ ≙ 1 000 000 g
1 000 dm³ ≙ 1 000 kg
also 1 m³ ≙ 1 t
Somit wiegen 11 m³ Wasser eben 11 t
Volumen eines Quaders
Beispiel:
Ein Quader ist 10 cm lang, 10 cm breit und 8 cm hoch. Bestimme das Volumen V des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 10 cm ⋅ 10 cm ⋅ 8 cm
= 800 cm³
Quadervolumen offen
Beispiel:
Ein Quader ist hat das Volumen 20 m³. Jede der drei Kantenlänge ist größer als 1 m.
Bestimme mögliche Kantenlängen a, b und c.
Mögliche Werte wären z.B.:
a = 2 m
b = 2 m
c = 5 m,
denn V = a ⋅ b ⋅ c = 2 m ⋅ 2 m ⋅ 5 m = 20 m³.
Volumen auch rückwärts
Beispiel:
Ein Quader ist 9 dm lang, 10 dm breit und 4 dm hoch. Bestimme das Volumen V des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 9 dm ⋅ 10 dm ⋅ 4 dm
= 360 dm³
Oberfläche eines Quaders
Beispiel:
Ein Quader ist 5 m lang, 5 m breit und 4 m hoch. Bestimme die Oberfläche O des Quaders.
Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):
O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅5 m⋅5 m + 2⋅5 m⋅4 m
+ 2⋅5 m⋅4 m
= 50 m² + 40 m² + 40 m²
= 130 m²
Volumen auch rückwärts + Oberfl.
Beispiel:
Ein Quader ist 6 dm lang, 3 dm breit und 5 dm hoch. Bestimme das Volumen V und die Oberfläche O des Quaders.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen:
V = a ⋅ b ⋅ c
= 6 dm ⋅ 3 dm ⋅ 5 dm
= 90 dm³
Bei der Oberfläche des Quaders kommt jede Seitenfläche zweimal vor (links und rechts, vorne und hinten, oben und unten):
O = 2⋅a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 2⋅6 dm⋅3 dm + 2⋅6 dm⋅5 dm
+ 2⋅3 dm⋅5 dm
= 36 dm² + 60 dm² + 30 dm²
= 126 dm²
Würfel V+O rückwärts
Beispiel:
Ein Würfel hat das Volumen V = 1 mm³. Berechne die Kantenlänge.
Das Volumen des Quaders berechnet man durch Multiplizieren der Seitenlängen: V = a ⋅ b ⋅ c
Bei einem Würfel sind ja alle Kantenlängen gleich, also gilt hier
V = a ⋅ a ⋅ a = a3
Es gilt somit:
1 mm³ = ⬜3
Mit gezieltem Probieren findet man, dass dies mit a = 1 mm funktioniert.
Schrägbild zeichnen
Beispiel:
Zeichne in ein Koordinatensystem die Eckpunkte A(2|2), B(7|2), C(9|4) und G(9|10) ein und verbinde diese der Reihe nach.
Ergänze die Zeichnung zum Schrägbild und gib dann die Koordinaten der restlichen Eckpunkte des Quaders an.
Da bei einem Quader die Bodenfläche ja immer ein Rechteck ist, muss die hintere Kante zwischen D und C parallel und gleich lang wie die vordere Kante zwischen A und B sein - also 5 Einheiten (oder 10 Kästchen) in x-Richtung und 0 Kästchen nach oben. Somit gilt für den Punkt D des Schrägbilds D(9-5|4) = D(4|4).
An der Kante zwischen C und G kann man gut die Höhe des Quaders ablesen: 10-4 = 6. Somit muss auch der Punkt E genau 6 Einheiten über dem Punkt A(2|2) liegen, also bei E(2|2+6) = E(2|8).
Gleiches gilt auch für den Punkt F, der genau 6 Einheiten über dem Punkt B(7|2) liegen muss, also bei F(7|2+6) = F(7|8).
Gleiches gilt auch für den Punkt H, der genau 6 Einheiten über dem Punkt D(4|4) liegen muss, also bei H(4|4+6) = H(4|10).
