Aufgabenbeispiele von antiproportional

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz (antiproportional)

Beispiel:

Zur Berechnung einer komplizierten Verschlüsselung muss ein Computer mit einem CPU-Kern 56 ms rechnen.

Wie lange bräuchte ein Computer mit 7 solchen CPU-Kernen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 CPU-Kern56 ms
7 CPU-Kerne?

Um von 1 CPU-Kerne in der ersten Zeile auf 7 CPU-Kerne in der zweiten Zeile zu kommen, müssen wir mit 7 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 56 ms durch 7 teilen, um auf den Wert zu kommen, der den 7 CPU-Kerne entspricht:

⋅ 7
1 CPU-Kern56 ms
7 CPU-Kerne?
: 7
⋅ 7
1 CPU-Kern56 ms
7 CPU-Kerne8 ms
: 7

Damit haben wir nun den gesuchten Wert, der den 7 CPU-Kerne entspricht: 8 ms

Dreisatz (antiproportional)

Beispiel:

Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 7€ für ein Los verlangen, müssten sie 80 Lose verkaufen um genügend Geld zusammen zu bekommen.

Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


7 € Lospreis80 Lose
??
4 € Lospreis?

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:


7 € Lospreis80 Lose
1 € Lospreis?
4 € Lospreis?

Um von 7 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 Lose nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:

: 7

7 € Lospreis80 Lose
1 € Lospreis?
4 € Lospreis?

⋅ 7
: 7

7 € Lospreis80 Lose
1 € Lospreis560 Lose
4 € Lospreis?

⋅ 7

Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 7
⋅ 4

7 € Lospreis80 Lose
1 € Lospreis560 Lose
4 € Lospreis?

⋅ 7
: 4

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 560 Lose in der mittleren Zeile durch 4 dividieren:

: 7
⋅ 4

7 € Lospreis80 Lose
1 € Lospreis560 Lose
4 € Lospreis140 Lose

⋅ 7
: 4

Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 140 Lose

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

6 € Lospreis50 Lose
??
10 € Lospreis?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 10 sein, also der ggT(6,10) = 2.

Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:


6 € Lospreis50 Lose
2 € Lospreis?
10 € Lospreis?

Um von 6 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 50 Lose nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:

: 3

6 € Lospreis50 Lose
2 € Lospreis?
10 € Lospreis?

⋅ 3
: 3

6 € Lospreis50 Lose
2 € Lospreis150 Lose
10 € Lospreis?

⋅ 3

Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 5 multiplizieren, um auf die 10 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

6 € Lospreis50 Lose
2 € Lospreis150 Lose
10 € Lospreis?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 150 Lose in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

6 € Lospreis50 Lose
2 € Lospreis150 Lose
10 € Lospreis30 Lose

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 10 € Lospreis entspricht: 30 Lose

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Karls hat für seine Geburtstagsparty Spezi bekommen. Dabei reicht es für jeden genau 10 Flaschen, wenn insgesamt 5 Personen auf seiner Party sind.

Wie viele Flaschen würde jeder bekommen, wenn insgesamt 2 Personen auf der Party wären?
Wie viele Personen können auf die Party, damit es für jeden zu 5 Flaschen reicht?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


5 Gäste10 Spezi-Flaschen
??
2 Gäste?

Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 2 sein, also der ggT(5,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:


5 Gäste10 Spezi-Flaschen
1 Gast?
2 Gäste?

Um von 5 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 10 Spezi-Flaschen nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:

: 5

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste?

⋅ 5

Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 5
⋅ 2

5 Gäste10 Spezi-Flaschen
1 Gast50 Spezi-Flaschen
2 Gäste25 Spezi-Flaschen

⋅ 5
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Gäste entspricht: 25 Spezi-Flaschen



Um von 10 Spezi-Flaschen in der ersten Zeile auf 5 Spezi-Flaschen in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 5 Gäste mit 2 multiplizieren, um auf den Wert zu kommen, der den 5 Spezi-Flaschen entspricht:

: 2
10 Spezi-Flaschen5 Gäste
5 Spezi-Flaschen?
⋅ 2
: 2
10 Spezi-Flaschen5 Gäste
5 Spezi-Flaschen10 Gäste
⋅ 2

Damit haben wir nun den gesuchten Wert, der den 5 Spezi-Flaschen entspricht: 10 Gäste

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 3 Fuhren den 8 Lastwagen entsprechen.

: 3
⋅ 4

6 Lastwagen4 Fuhren
2 Lastwagen12 Fuhren
8 Lastwagen3 Fuhren

⋅ 3
: 4

Der urpsrünglich vorgegebene Wert 3 Fuhren(für 8 Lastwagen) war also korrekt.


Jetzt überprüfen wir, ob die 6 Fuhren den 4 Lastwagen entsprechen.

: 3
⋅ 2

6 Lastwagen4 Fuhren
2 Lastwagen12 Fuhren
4 Lastwagen6 Fuhren

⋅ 3
: 2

Der urpsrünglich vorgegebene Wert 6 Fuhren (für 4 Lastwagen) war also korrekt.