Aufgabenbeispiele von antiproportional
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 1€ für ein Los verlangen, müssten sie 240 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 6 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 € Lospreis in der ersten Zeile auf 6 € Lospreis in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 240 Lose durch 6 teilen, um auf den Wert zu kommen, der den 6 € Lospreis entspricht:
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
|
⋅ 6
|
![]() |
|
![]() |
: 6
|
Damit haben wir nun den gesuchten Wert, der den 6 € Lospreis entspricht: 40 Lose
Dreisatz (antiproportional)
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 6 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 1000 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "5 Liter/100km "-Schnitt fahren würde?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 6 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 6 und von 5 sein, also der ggT(6,5) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Liter pro 100km:
|
Um von 6 Liter pro 100km in der ersten Zeile auf 1 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 6 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 1000 km nicht durch 6 teilen, sondern mit 6 multiplizieren um auf den Wert zu kommen, der den 1 Liter pro 100km links entspricht:
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
|
: 6
|
![]() |
|
![]() |
⋅ 6
|
Jetzt müssen wir ja wieder die 1 Liter pro 100km in der mittleren Zeile mit 5 multiplizieren, um auf die 5 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 6000 km in der mittleren Zeile durch 5 dividieren:
|
: 6
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 6
: 5
|
Damit haben wir nun den gesuchten Wert, der den 5 Liter pro 100km entspricht: 1200 km
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
| 8 € Lospreis | 70 Lose |
| ? | ? |
| 14 € Lospreis | ? |
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 8 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 8 und von 14 sein, also der ggT(8,14) = 2.
Wir suchen deswegen erst den entsprechenden Wert für 2 € Lospreis:
|
Um von 8 € Lospreis in der ersten Zeile auf 2 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 70 Lose nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 2 € Lospreis links entspricht:
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 2 € Lospreis in der mittleren Zeile mit 7 multiplizieren, um auf die 14 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 280 Lose in der mittleren Zeile durch 7 dividieren:
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Damit haben wir nun den gesuchten Wert, der den 14 € Lospreis entspricht: 40 Lose
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 7€ für ein Los verlangen, müssten sie 80 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 4 € verkaufen?
Wie hoch muss man den Preis ansetzen, wenn man erwartet, das sich 8 Lose verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 7 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 7 und von 4 sein, also der ggT(7,4) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 7 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 7 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 80 Lose nicht durch 7 teilen, sondern mit 7 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
|
: 7
|
![]() |
|
![]() |
⋅ 7
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 4 multiplizieren, um auf die 4 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
|
: 7
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 7
: 4
|
Damit haben wir nun den gesuchten Wert, der den 4 € Lospreis entspricht: 140 Lose
Um von 80 Lose in der ersten Zeile auf 8 Lose in der zweiten Zeile zu kommen, müssen wir durch 10 teilen. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 7 € Lospreis mit 10 multiplizieren, um auf den Wert zu kommen, der den 8 Lose entspricht:
|
: 10
|
![]() |
|
![]() |
⋅ 10
|
|
: 10
|
![]() |
|
![]() |
⋅ 10
|
Damit haben wir nun den gesuchten Wert, der den 8 Lose entspricht: 70 € Lospreis
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte so, dass der Zusammenhang antiproportional wird.
Wir überprüfen zuerst, ob die 6 h den 14 Personen entsprechen.
|
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Der urpsrünglich vorgegebene Wert 6 h (für 14 Personen) war also falsch, richtig wäre 4 h gewesen.
Jetzt überprüfen wir, ob die 8 h den 7 Personen entsprechen.
|
: 8
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 7
|
Der urpsrünglich vorgegebene Wert 8 h (für 7 Personen) war also korrekt.


