Aufgabenbeispiele von antiproportional

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Zweisatz (antiproportional)

Beispiel:

Wenn Frau Baumanns Auto nur ein Liter pro 100km verbrauchen würde, würde sie mit einer Tankfüllung 3600 km weit kommen.

Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "6 Liter/100km "-Schnitt fahren würde?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:

1 Liter pro 100km3600 km
6 Liter pro 100km?

Um von 1 Liter pro 100km in der ersten Zeile auf 6 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir mit 6 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 3600 km durch 6 teilen, um auf den Wert zu kommen, der den 6 Liter pro 100km entspricht:

⋅ 6
1 Liter pro 100km3600 km
6 Liter pro 100km?
: 6
⋅ 6
1 Liter pro 100km3600 km
6 Liter pro 100km600 km
: 6

Damit haben wir nun den gesuchten Wert, der den 6 Liter pro 100km entspricht: 600 km

Dreisatz (antiproportional)

Beispiel:

Bei einer großen Baustelle muss das Erdreich der Baugrube abtransportiert werden. 9 Lastwagen müssten dafür 5 mal fahren.

Wie oft müssten 15 LKWs fahren?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


9 Lastwagen5 Fuhren
??
15 Lastwagen?

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 9 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 9 und von 15 sein, also der ggT(9,15) = 3.

Wir suchen deswegen erst den entsprechenden Wert für 3 Lastwagen:


9 Lastwagen5 Fuhren
3 Lastwagen?
15 Lastwagen?

Um von 9 Lastwagen in der ersten Zeile auf 3 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 3 Lastwagen links entspricht:

: 3

9 Lastwagen5 Fuhren
3 Lastwagen?
15 Lastwagen?

⋅ 3
: 3

9 Lastwagen5 Fuhren
3 Lastwagen15 Fuhren
15 Lastwagen?

⋅ 3

Jetzt müssen wir ja wieder die 3 Lastwagen in der mittleren Zeile mit 5 multiplizieren, um auf die 15 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 5

9 Lastwagen5 Fuhren
3 Lastwagen15 Fuhren
15 Lastwagen?

⋅ 3
: 5

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 15 Fuhren in der mittleren Zeile durch 5 dividieren:

: 3
⋅ 5

9 Lastwagen5 Fuhren
3 Lastwagen15 Fuhren
15 Lastwagen3 Fuhren

⋅ 3
: 5

Damit haben wir nun den gesuchten Wert, der den 15 Lastwagen entspricht: 3 Fuhren

Tabelle (antiproportional)

Beispiel:

Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.

3 Lastwagen20 Fuhren
??
2 Lastwagen?

Lösung einblenden

Wir suchen einen möglichst großen Zwischenwert für die Lastwagen in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 3 Lastwagen teilen müssen.) Diese Zahl sollte eine Teiler von 3 und von 2 sein, also der ggT(3,2) = 1.

Wir suchen deswegen erst den entsprechenden Wert für 1 Lastwagen:


3 Lastwagen20 Fuhren
1 Lastwagen?
2 Lastwagen?

Um von 3 Lastwagen in der ersten Zeile auf 1 Lastwagen in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 20 Fuhren nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 1 Lastwagen links entspricht:

: 3

3 Lastwagen20 Fuhren
1 Lastwagen?
2 Lastwagen?

⋅ 3
: 3

3 Lastwagen20 Fuhren
1 Lastwagen60 Fuhren
2 Lastwagen?

⋅ 3

Jetzt müssen wir ja wieder die 1 Lastwagen in der mittleren Zeile mit 2 multiplizieren, um auf die 2 Lastwagen in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 3
⋅ 2

3 Lastwagen20 Fuhren
1 Lastwagen60 Fuhren
2 Lastwagen?

⋅ 3
: 2

Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 60 Fuhren in der mittleren Zeile durch 2 dividieren:

: 3
⋅ 2

3 Lastwagen20 Fuhren
1 Lastwagen60 Fuhren
2 Lastwagen30 Fuhren

⋅ 3
: 2

Damit haben wir nun den gesuchten Wert, der den 2 Lastwagen entspricht: 30 Fuhren

Dreisatz (antiprop.) beide Richtungen

Beispiel:

Wenn Karla mit ihrem Handy jeden Tag immer 10 Minuten telefonieren würde, würden ihre Freiminuten noch genau 5 Tage halten.

Wann wären ihre Freiminuten aufgebraucht, wenn sie täglich 25 min telefonieren würde?
Wie lange kann sie täglich telefonieren, wenn die Freiminuten 10 Tage reichen sollen?

Lösung einblenden

Zuerst stellen wir den Sachverhalt in einer Tabelle dar:


10 Minuten pro Tag5 Tage
??
25 Minuten pro Tag?

Wir suchen einen möglichst großen Zwischenwert für die Minuten pro Tag in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 10 Minuten pro Tag teilen müssen.) Diese Zahl sollte eine Teiler von 10 und von 25 sein, also der ggT(10,25) = 5.

Wir suchen deswegen erst den entsprechenden Wert für 5 Minuten pro Tag:


10 Minuten pro Tag5 Tage
5 Minuten pro Tag?
25 Minuten pro Tag?

Um von 10 Minuten pro Tag in der ersten Zeile auf 5 Minuten pro Tag in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 5 Tage nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 5 Minuten pro Tag links entspricht:

: 2

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag?

⋅ 2

Jetzt müssen wir ja wieder die 5 Minuten pro Tag in der mittleren Zeile mit 5 multiplizieren, um auf die 25 Minuten pro Tag in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:

: 2
⋅ 5

10 Minuten pro Tag5 Tage
5 Minuten pro Tag10 Tage
25 Minuten pro Tag2 Tage

⋅ 2
: 5

Damit haben wir nun den gesuchten Wert, der den 25 Minuten pro Tag entspricht: 2 Tage



Um von 5 Tage in der ersten Zeile auf 10 Tage in der zweiten Zeile zu kommen, müssen wir mit 2 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 10 Minuten pro Tag durch 2 teilen, um auf den Wert zu kommen, der den 10 Tage entspricht:

⋅ 2
5 Tage10 Minuten pro Tag
10 Tage?
: 2
⋅ 2
5 Tage10 Minuten pro Tag
10 Tage5 Minuten pro Tag
: 2

Damit haben wir nun den gesuchten Wert, der den 10 Tage entspricht: 5 Minuten pro Tag

Antiproportionalität überprüfen

Beispiel:

Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.

Lösung einblenden

Wir überprüfen zuerst, ob die 0 Fuhren den 10 Lastwagen entsprechen.

: 4
⋅ 5

8 Lastwagen5 Fuhren
2 Lastwagen20 Fuhren
10 Lastwagen4 Fuhren

⋅ 4
: 5

Der urpsrünglich vorgegebene Wert 0 Fuhren (für 10 Lastwagen) war also falsch, richtig wäre 4 Fuhren gewesen.


Jetzt überprüfen wir, ob die 4 Fuhren den 5 Lastwagen entsprechen.

: 8
⋅ 5

8 Lastwagen5 Fuhren
1 Lastwagen40 Fuhren
5 Lastwagen8 Fuhren

⋅ 8
: 5

Der urpsrünglich vorgegebene Wert 4 Fuhren (für 5 Lastwagen) war also falsch, richtig wäre 8 Fuhren gewesen.