Aufgabenbeispiele von antiproportional
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Zweisatz (antiproportional)
Beispiel:
Wenn eine Person das Schulhaus putzt, braucht sie dafür 40 h.
Wie lange bräuchten 8 Personen hierfür?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Um von 1 Personen in der ersten Zeile auf 8 Personen in der zweiten Zeile zu kommen, müssen wir mit 8 multiplizieren. Wegen des antiproportionalen Zusammenhangs der beiden Größen müssen wir aber auf der rechten Seite die 40 h durch 8 teilen, um auf den Wert zu kommen, der den 8 Personen entspricht:
⋅ 8
|
![]() |
|
![]() |
: 8
|
⋅ 8
|
![]() |
|
![]() |
: 8
|
Damit haben wir nun den gesuchten Wert, der den 8 Personen entspricht: 5 h
Dreisatz (antiproportional)
Beispiel:
Um den noch fehlenden Betrag für eine Klassenfahrt zu bekommen, veranstaltet eine Schulkasse ein Lotterie. Wenn sie 5€ für ein Los verlangen, müssten sie 90 Lose verkaufen um genügend Geld zusammen zu bekommen.
Wie viele Lose müssten sie bei einem Lospreis von 3 € verkaufen?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die € Lospreis in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 5 € Lospreis teilen müssen.) Diese Zahl sollte eine Teiler von 5 und von 3 sein, also der ggT(5,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 € Lospreis:
|
Um von 5 € Lospreis in der ersten Zeile auf 1 € Lospreis in der zweiten Zeile zu kommen, müssen wir durch 5 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 90 Lose nicht durch 5 teilen, sondern mit 5 multiplizieren um auf den Wert zu kommen, der den 1 € Lospreis links entspricht:
: 5
|
![]() |
|
![]() |
⋅ 5
|
: 5
|
![]() |
|
![]() |
⋅ 5
|
Jetzt müssen wir ja wieder die 1 € Lospreis in der mittleren Zeile mit 3 multiplizieren, um auf die 3 € Lospreis in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 450 Lose in der mittleren Zeile durch 3 dividieren:
: 5
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 5
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 € Lospreis entspricht: 150 Lose
Tabelle (antiproportional)
Beispiel:
Die Tabelle zeigt Werte von zwei Größen mit einem antiproportionalen Zusammenhang. Übertrage die Tabelle in dein Heft und berechne mit dem Dreisatz die fehlende Größen.
4 Gäste | 12 Spezi-Flaschen |
? | ? |
3 Gäste | ? |
Wir suchen einen möglichst großen Zwischenwert für die Gäste in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 4 Gäste teilen müssen.) Diese Zahl sollte eine Teiler von 4 und von 3 sein, also der ggT(4,3) = 1.
Wir suchen deswegen erst den entsprechenden Wert für 1 Gäste:
|
Um von 4 Gäste in der ersten Zeile auf 1 Gäste in der zweiten Zeile zu kommen, müssen wir durch 4 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 12 Spezi-Flaschen nicht durch 4 teilen, sondern mit 4 multiplizieren um auf den Wert zu kommen, der den 1 Gäste links entspricht:
: 4
|
![]() |
|
![]() |
⋅ 4
|
: 4
|
![]() |
|
![]() |
⋅ 4
|
Jetzt müssen wir ja wieder die 1 Gäste in der mittleren Zeile mit 3 multiplizieren, um auf die 3 Gäste in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Auch hier müssen wir auf der rechten Seite wieder aufgrund des antiproportionalen Zusammenhangs das Rechenzeichen umdrehen, also die 48 Spezi-Flaschen in der mittleren Zeile durch 3 dividieren:
: 4
⋅ 3
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 3
|
Damit haben wir nun den gesuchten Wert, der den 3 Gäste entspricht: 16 Spezi-Flaschen
Dreisatz (antiprop.) beide Richtungen
Beispiel:
Wenn Frau Baumann so Auto fährt, dass sie 15 Liter pro 100km verbraucht, kommt sie mit einer Tankfüllung 400 km weit.
Wie weit würde sie mit einer Tankfüllung kommen, wenn sie mit einem "20 Liter/100km "-Schnitt fahren würde?
Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 1000 km weit kommt?
Zuerst stellen wir den Sachverhalt in einer Tabelle dar:
|
Wir suchen einen möglichst großen Zwischenwert für die Liter pro 100km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 15 Liter pro 100km teilen müssen.) Diese Zahl sollte eine Teiler von 15 und von 20 sein, also der ggT(15,20) = 5.
Wir suchen deswegen erst den entsprechenden Wert für 5 Liter pro 100km:
|
Um von 15 Liter pro 100km in der ersten Zeile auf 5 Liter pro 100km in der zweiten Zeile zu kommen, müssen wir durch 3 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 400 km nicht durch 3 teilen, sondern mit 3 multiplizieren um auf den Wert zu kommen, der den 5 Liter pro 100km links entspricht:
: 3
|
![]() |
|
![]() |
⋅ 3
|
Jetzt müssen wir ja wieder die 5 Liter pro 100km in der mittleren Zeile mit 4 multiplizieren, um auf die 20 Liter pro 100km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 3
⋅ 4
|
![]() ![]() |
|
![]() ![]() |
⋅ 3
: 4
|
Damit haben wir nun den gesuchten Wert, der den 20 Liter pro 100km entspricht: 300 km
Für die andere Frage (Mit welchem "Liter pro 100km"-Schnitt muss sie fahren, dass sie mit einer Tankfüllung 1000 km weit kommt?) vertauschen wir die linke mit der rechten Spalte in der Tabelle, weil wir jetzt ja zwei "km"-Werte haben und nach einem "Liter pro 100km"-Wert gesucht wird:
|
Wir suchen einen möglichst großen Zwischenwert für die km in der mittleren Zeile. (Denn je größer diese Zahl ist, umso kleiner ist die Zahl, durch die wir die 400 km teilen müssen.) Diese Zahl sollte eine Teiler von 400 und von 1000 sein, also der ggT(400,1000) = 200.
Wir suchen deswegen erst den entsprechenden Wert für 200 km:
|
Um von 400 km in der ersten Zeile auf 200 km in der zweiten Zeile zu kommen, müssen wir durch 2 teilen. Weil die zwei Größen ja aber antiproportional sind, müssen wir auf der anderen Seite die 15 Liter pro 100km nicht durch 2 teilen, sondern mit 2 multiplizieren um auf den Wert zu kommen, der den 200 km links entspricht:
: 2
|
![]() |
|
![]() |
⋅ 2
|
Jetzt müssen wir ja wieder die 200 km in der mittleren Zeile mit 5 multiplizieren, um auf die 1000 km in der dritten Zeile zu kommen. Auch das muss links wie rechts durchgeführt werden:
: 2
⋅ 5
|
![]() ![]() |
|
![]() ![]() |
⋅ 2
: 5
|
Damit haben wir nun den gesuchten Wert, der den 1000 km entspricht: 6 Liter pro 100km
Antiproportionalität überprüfen
Beispiel:
Prüfe, ob es sich um einen antiproportionalen Zusammenhang handelt; falls nicht, korrigiere die Werte.
Wir überprüfen zuerst, ob die 0 h den 14 Personen entsprechen.
: 4
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 4
: 7
|
Der urpsrünglich vorgegebene Wert 0 h (für 14 Personen) war also falsch, richtig wäre 4 h gewesen.
Jetzt überprüfen wir, ob die 12 h den 7 Personen entsprechen.
: 8
⋅ 7
|
![]() ![]() |
|
![]() ![]() |
⋅ 8
: 7
|
Der urpsrünglich vorgegebene Wert 12 h (für 7 Personen) war also falsch, richtig wäre 8 h gewesen.