Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 60%. Es wird 3 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass kein einziges mal in den grünen Bereich gedreht wird.

Lösung einblenden

Da die Wahrscheinlichkeit für keinen Treffer (also hier, dass nicht in den grünen Bereich gedreht wird) q = 1 - 0,6 = 0,4 beträgt, muss die Wahrscheinlichkeit für 3 Nicht-Treffer bei 3 Versuchen P = 0,4 3 ≈ 0.064 betragen, da ja bei jedem Versuch kein Treffer erzielt wird, und es somit nur einen möglichen Pfad im Baumdiagramm gibt.

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 9 3 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 9 3 ) = 9! 3! ⋅ (9 - 3)! = 9! 3! ⋅ 6! = 9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 3⋅2⋅1 ⋅ 6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
6! = 6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 9 3 ) = 9⋅8⋅7 3⋅2⋅1

= 3⋅8⋅7 2⋅1 (gekürzt mit 3)

= 3⋅4⋅7 1 (gekürzt mit 2)

= 84

Binomialkoeffizient Anwendungen

Beispiel:

Eine Mathelehrerin verlost unter den 6 SchülerInnen ihrer 8. Klasse, die eine Zusatzaufgabe gemacht haben, 2 Matherätsel-Knobelbücher. Natürlich kann jeder höchstens eins bekommen. Wie viele verschiedene Möglichkeiten gibt es für die 2er-Gruppe der glücklichen Gewinner?

Lösung einblenden

Für die erste Stelle ist jede SchülerIn möglich. Es gibt also 6 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte SchülerIn nicht mehr möglich, es gibt also nur noch 5 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 65 = 30 Möglichkeiten, die 6 Möglichkeiten (SchülerInnen) auf die 2 "Ziehungen" (Knobelbücher) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 2er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 2er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 2er-Gruppe möglich. Es gibt also 2 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 1 Möglichkeiten.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 21 = 2 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 2er-Gruppe.

Wir müssen deswegen die 30 Möglichkeiten für nach Reihenfolge sortierte 2er-Gruppen durch die 2 Möglichkeiten, die 2er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 30 2 = 15 Möglichkeiten für 2er-Gruppen, die aus 6 Elementen (SchülerInnen) gebildet werden.

Die hier durchgeführte Berechnung 65 21 könnte man mit 4! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

15 = 65 21 = 65 4 3 2 1 21 4 3 2 1 = 6! 2! ⋅ 4! = ( 6 2 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 30 Kugeln, die mit den Zahlen 1 bis 30 beschriftet sind.

Es werden 5 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 5 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 30 5 ) = 30! 5! ⋅ 25! = 30⋅29⋅28⋅27⋅26 5⋅4⋅3⋅2⋅1 = 142506 verschiedene Möglichkeiten, die 5 Kugeln aus den 30 zu ziehen, bzw. von 30 Zahlen 5 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 5 ist, bzw. wie viele Möglichkeiten es gibt, 5 von 30 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 5 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 4 Kreuze auf 29 Zahlen (alle außer der 5) zu setzen, also ( 29 4 ) = 29! 4! ⋅ 25! = 29⋅28⋅27⋅26 4⋅3⋅2⋅1 = 23751.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 23751 142506 ≈ 0.1667, also ca. 16.67%.

Formel v. Bernoulli

Beispiel:

Eine Münze wird 55 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass genau 30 mal "Zahl" (p=0,5) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Würfe mit Zahl an. X ist binomialverteilt mit n=55 und p=0.5.

P0.555 (X=30) = ( 55 30 ) 0.530 0.525 =0.08564957175381≈ 0.0856
(TI-Befehl: binompdf(55,0.5,30))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0≈ 0 + 0 = 0
1≈ 0.02≈ 0 + 0.02 = 0.02
2≈ 0.08≈ 0.02 + 0.08 = 0.1
3≈ 0.17≈ 0.1 + 0.17 = 0.27
4≈ 0.24≈ 0.27 + 0.24 = 0.51
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 3) = 0.27 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 4) = 0.51 klar darüber.

Somit ist das gesuchte k = 4.

kumulierte Binomialverteilung

Beispiel:

Ein Würfel wird 62 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass nicht öfter als 9 mal eine 6 (p=1/6) geworfen wird?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=62 und p= 1 6 .

P 1 6 62 (X9) = P 1 6 62 (X=0) + P 1 6 62 (X=1) + P 1 6 62 (X=2) +... + P 1 6 62 (X=9) = 0.40210020281152 ≈ 0.4021
(TI-Befehl: binomcdf(62,1/6,9))

Binomialverteilung X>=k

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,35. Wie groß ist die Wahrscheinlichkeit bei 53 Versuchen mindestens 16 mal im grünen Bereich zu landen?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Drehungen, die im grünen Bereich landen, an. X ist binomialverteilt mit n=53 und p=0.35.

...
13
14
15
16
17
18
...

P0.3553 (X16) = 1 - P0.3553 (X15) = 0.8091
(TI-Befehl: 1-binomcdf(53,0.35,15))

Binomialverteilung l < X < k

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 89% von der Freiwurflinie. Wie groß ist die Wahrscheinlichkeit dass er von 89 Versuchen mindestens 82 und weniger als 89 trifft?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=89 und p=0.89.

P0.8989 (82X88) =

...
79
80
81
82
83
84
85
86
87
88

P0.8989 (X88) - P0.8989 (X81) ≈ 1 - 0.7758 ≈ 0.2242
(TI-Befehl: binomcdf(89,0.89,88) - binomcdf(89,0.89,81))