Aufgabenbeispiele von Basics

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


0 oder 1 Treffer bei n Versuchen

Beispiel:

Bei einem Glückrad beträgt die Wahrscheinlichkeit, in den grünen Bereich zu drehen, 70%. Es wird 5 mal gedreht. Bestimme die Wahrscheinlichkeit dafür, dass bei der vierten Drehung der grüne Bereich erzielt wird.

Lösung einblenden

Da hier ja nur eine Aussage über den 4-ten Versuch gemacht wird und keine Aussage über alle anderen Versuche, muss auch nur der 4-te Versuch betrachtet werden.
(In jedem anderen Versuch ist die Wahrscheinlichkeit 1, da es ja keine Einschränkung für diesen Versuch gibt.)

Für die gesuchte Wahrscheinlichkeit gilt somit einfach P = 0,7 ≈ 0.7 .

Binomialkoeffizient

Beispiel:

Berechne ohne Taschenrechner: ( 10 2 )

Lösung einblenden

Wenn man von der allgememeinen Formel für den Binomialkoeffizient
( 10 2 ) = 10! 2! ⋅ (10 - 2)! = 10! 2! ⋅ 8! = 10⋅9⋅8⋅7⋅6⋅5⋅4⋅3⋅2⋅1 2⋅1 ⋅ 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
ausgeht, sieht man schnell, dass man mit der
8! = 8⋅7⋅6⋅5⋅4⋅3⋅2⋅1
rechts im Zähler und Nenner kürzen kann, so dass gilt:

( 10 2 ) = 10⋅9 2⋅1

= 5⋅9 1 (gekürzt mit 2)

= 45

Binomialkoeffizient Anwendungen

Beispiel:

Die Sportlehrerin Frau Hertz braucht für eine Demonstration 4 Schülerinnen. Diese möchte sie zufällig aus der 18-köpfigen Sportgruppe losen. Wie viele verschiedene 4er-Gruppen sind so möglich?

Lösung einblenden

Für die erste Stelle ist jede Schülerin möglich. Es gibt also 18 Möglichkeiten. Für die zweite Stelle ist die bereits als erstes gewählte Schülerin nicht mehr möglich, es gibt also nur noch 17 Möglichkeiten. Für die 3. Stelle fehlen dann schon 2, so dass nur noch 16 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren:

Es gibt also 18171615 = 73440 Möglichkeiten, die 18 Möglichkeiten (Schülerinnen) auf die 4 "Ziehungen" (geloste) zu verteilen.

Wir haben jetzt dabei aber genau unterschieden an welcher Stelle was gezogen bzw. gewählt wurde. Also wären zum Beispiel Antonia - Bea - Carla und Bea - Carla - Antonia zwei unterschiedliche Ergebnisse. In unserem Fall hier soll diese Reihenfolge aber keine Rolle spielen. Es interessiert nur, wer in der 4er-Gruppe drin ist, nicht an welcher Stelle.

Wir berechnen jetzt also, wie viele mögliche Reihenfolgen pro 4er-Gruppe möglich sind.

  • Für die erste Stelle ist jede(r) aus der 4er-Gruppe möglich. Es gibt also 4 Möglichkeiten.
  • Für die zweite Stelle ist der/die an erster Stelle stehende nicht mehr möglich, es gibt also nur noch 3 Möglichkeiten.
  • Für die 3. Stelle fehlen dann schon 2, so dass nur noch 2 möglich sind, usw.

Da ja jede Möglichkeit der ersten Stelle mit den Möglichkeiten der zweiten, dritten, ... Stelle kombinierbar sind, müssen wir die verschiedenen Möglichkeiten an den verschiedenen Stellen multiplizieren und erhalten 4321 = 24 Möglichkeiten für die verschiedenen Reihenfolgen innerhalb einer 4er-Gruppe.

Wir müssen deswegen die 73440 Möglichkeiten für nach Reihenfolge sortierte 4er-Gruppen durch die 24 Möglichkeiten, die 4er-Gruppe anzuordnen, teilen.

Hieraus ergeben sich 73440 24 = 3060 Möglichkeiten für 4er-Gruppen, die aus 18 Elementen (Schülerinnen) gebildet werden.

Die hier durchgeführte Berechnung 18171615 4321 könnte man mit 14! erweitern würde so auf die Formel für den Binomialkoeffizient kommen:

3060 = 18171615 4321 = 18171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 4321 14 13 12 11 10 9 8 7 6 5 4 3 2 1 = 18! 4! ⋅ 14! = ( 18 4 )

Wahrscheinlichkeiten mit Binom.Koeff.

Beispiel:

In einer Urne befinden sich 35 Kugeln, die mit den Zahlen 1 bis 35 beschriftet sind.

Es werden 4 Kugeln zufällig aus der Urne gezogen. Wie groß ist die Wahrscheinlichkeit, dass bei den gezogenen Kugeln die 23 dabei ist?

Lösung einblenden

Es gibt insgesamt ( 35 4 ) = 35! 4! ⋅ 31! = 35⋅34⋅33⋅32 4⋅3⋅2⋅1 = 52360 verschiedene Möglichkeiten, die 4 Kugeln aus den 35 zu ziehen, bzw. von 35 Zahlen 4 anzukreuzen.

Wenn man jetzt die Möglichkeiten zählen will, wie viele Möglichkeiten es gibt, wenn eine der gezogenen Zahlen die 23 ist, bzw. wie viele Möglichkeiten es gibt, 4 von 35 Zahlen anzukreuzen, wobei ein Kreuz sicher auf der der 23 sein muss, dann ist das doch genau das gleiche, wie wenn man die Möglichkeiten zählt, 3 Kreuze auf 34 Zahlen (alle außer der 23) zu setzen, also ( 34 3 ) = 34! 3! ⋅ 31! = 34⋅33⋅32 3⋅2⋅1 = 5984.

Die Wahrscheinlichkeit lässt sich somit mit der Laplace-Formel berechnen:

P = Anzahl der gewünschten Ergebnisse Anzahl der möglichen Ergebnisse = 5984 52360 ≈ 0.1143, also ca. 11.43%.

Formel v. Bernoulli

Beispiel:

In einer Chip-Fabrik werden neue High Tech Chips produziert. Leider ist die Technik noch nicht so ganz ausgereift, weswegen Ausschuss mit einer Wahrscheinlichkeit von 35% entsteht. Es wird eine Stichprobe der Menge 23 entnommen. Wie groß ist die Wahrscheinlichkeit, dass davon genau 8 defekte Chips enthalten sind.

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der defekten Chips an. X ist binomialverteilt mit n=23 und p=0.35.

P0.3523 (X=8) = ( 23 8 ) 0.358 0.6515 =0.17247215838601≈ 0.1725
(TI-Befehl: binompdf(23,0.35,8))

kumulierte WS aus Histogramm finden

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

In der Abbildung rechts ist das Histogramm einer binomialverteilten Zufallsgröße X zu sehen. Finde das kleinste k, für das gilt P(X ≤ k) ≥ 0.4.

Lösung einblenden

Wir lesen einfach die Säulenhöhen aus dem Histogramm ab und addieren diese Werte:

kP(X = k)P(X ≤ k)
0≈ 0.02≈ 0 + 0.02 = 0.02
1≈ 0.08≈ 0.02 + 0.08 = 0.1
2≈ 0.18≈ 0.1 + 0.18 = 0.28
3≈ 0.24≈ 0.28 + 0.24 = 0.52
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Während P(X ≤ 2) = 0.28 also noch klar unter der geforderten Wahrscheinlichkeit von 0.4 liegt, ist P(X ≤ 3) = 0.52 klar darüber.

Somit ist das gesuchte k = 3.

kumulierte Binomialverteilung

Beispiel:

Ein Fortbildungsteilnehmer ermüdet mit einer Wahrscheinlichkeit von 70%. An einer Fortbildung nehmen 99 Personen teil. Wie groß ist die Wahrscheinlichkeit, dass höchstens 63 Personen ermüden?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der ermüdeten Personen an. X ist binomialverteilt mit n=99 und p=0.7.

P0.799 (X63) = P0.799 (X=0) + P0.799 (X=1) + P0.799 (X=2) +... + P0.799 (X=63) = 0.10304712307794 ≈ 0.103
(TI-Befehl: binomcdf(99,0.7,63))

Binomialverteilung X>=k

Beispiel:

Ein Würfel wird 42 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass mindestens 8 mal eine 6 (p=1/6) geworfen wird?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der gewürfelten Sechser an. X ist binomialverteilt mit n=42 und p= 1 6 .

...
5
6
7
8
9
10
...

P 1 6 42 (X8) = 1 - P 1 6 42 (X7) = 0.4009
(TI-Befehl: 1-binomcdf(42, 1 6 ,7))

Binomialverteilung l < X < k

Beispiel:

Ein partystarker Schüler muss einen Mulitple Choice Test ablegen, von dem er keinen blassen Schimmer hat. Deswegen rät er einfach bei jeder der 96 Aufgaben munter drauf los, welche der vier Antworten wohl richtig sein könnte. Wie groß ist die Wahrscheinlichkeit, dass er so mindestens 18, aber weniger als 30 Fragen richtig beantwortet hat?

Lösung einblenden

Die Zufallsgröße X gibt die Anzahl der zufällig richtig beantworteten Fragen an. X ist binomialverteilt mit n=96 und p=0.25.

P0.2596 (18X29) =

...
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
...

P0.2596 (X29) - P0.2596 (X17) ≈ 0.9006 - 0.0589 ≈ 0.8417
(TI-Befehl: binomcdf(96,0.25,29) - binomcdf(96,0.25,17))