Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,7. Gesucht ist die Wahrscheinlichkeit bei 60 Versuchen genau 50 mal im grünen Bereich zu landen.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 50) = ( a b ) 0.7c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 60 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 50 mal getroffen und 10 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=60 und b=50 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 60 50 ) Pfade an. Da ja in jedem Pfad 50 Treffer und 10 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.7500.310

Somit muss d = 0.3, sowie c = 50 und e = 10 sein.

Bernoulli-Formel vervollständigen

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 20 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt.

Für welches der aufgeführten Ereignisse könnte der Term P = 1 -0.720 - ( 20 a ) 0.719 bc die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine blaue Kugel gezogen)
Y : Anzahl der Nicht-Treffer (also es wird eine rote Kugel gezogen)

Beim ersten Summand nach dem "1-", also bei 0.720 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=20 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 20 Treffer bzw. 0 Nicht-Treffer an, also P(X=20) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz 0.719, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 19 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 19 Treffer sein, also P(X=19) bzw. P(Y=1).

Diese beiden Teilwahrscheinlichkeiten werden von der 1 abgezogen, d.h. der gegebene Term gibt also die Wahrscheinlichkeit für das Gegenereignis an, also in diesem Fall, dass alle Möglichkeiten außer 20 und 19 Treffer möglich sind, also 18, 17, ..., kurz P(X≤18) bzw. P(Y≥2).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Y: keine Treffer:
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Somit ist die gesuchte Option: Weniger als 19 mal wird eine blaue Kugel gezogen.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.3.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 20 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 19 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 20 19 ) , also ist a = 19 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein normaler Würfel wird 28 mal geworfen. Wie groß ist die Wahrscheinlichkeit dass, Von den ersten 11 Versuchen höchstens 1 mal eine Sechs gewürfelt wird und von den restlichen Versuchen mindestens 2 Sechser gewürfelt werden?

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 11 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Sechser-Würfe an. X ist binomialverteilt mit n=11 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P 1 6 11 (X1) ≈ 0.4307.

Analog betrachten wir nun die restlichen 17 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Sechser-Würfe an. Y ist binomialverteilt mit n=17 und p= 1 6 .

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P 1 6 17 (Y2) = 1- P 1 6 17 (Y1) ≈ 0.8017.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P 1 6 11 (X1) P 1 6 17 (Y2) = 0.4307 ⋅ 0.8017 ≈ 0.3453

zwei unabhängige Binom.

Beispiel:

Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 50 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 24 und 33 am Samstag so zwischen 22 und 26 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 63% höher als am Freitag mit 49%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Freitag:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit zwischen 24 und 33 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.49 zu erzielen, also P0.4950 (24X33) .
Diese Wahrscheinlichkeit lässt sich als P0.4950 (X33) - P0.4950 (X23) ≈ 0.9948 - 0.3891 ≈ 0.6057 berechnen.
TI-Befehl: binomcdf(50,0.49,33)- binomcdf(50,0.49,23)

Samstag:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit zwischen 22 und 26 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.63 zu erzielen, also P0.6350 (22X26) .
Diese Wahrscheinlichkeit lässt sich als P0.6350 (X26) - P0.6350 (X21) ≈ 0.073 - 0.002 ≈ 0.071 berechnen.
TI-Befehl: binomcdf(50,0.63,26)- binomcdf(50,0.63,21)

Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:

P ≈ 0.6057 ⋅ 0.071 ≈ 0.043

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 10% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 104 Tickets für ihr Flugzeug mit 97 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 97 Treffer bei 104 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.9, also P0.9104 (X97)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=104 und p=0.9.

P0.9104 (X97) = P0.9104 (X=0) + P0.9104 (X=1) + P0.9104 (X=2) +... + P0.9104 (X=97) = 0.90516401615335 ≈ 0.9052
(TI-Befehl: binomcdf(104,0.9,97))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9052) und 'überbucht'(p=0.0948).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,7417
nicht überbucht -> nicht überbucht -> überbucht0,0777
nicht überbucht -> überbucht -> nicht überbucht0,0777
nicht überbucht -> überbucht -> überbucht0,0081
überbucht -> nicht überbucht -> nicht überbucht0,0777
überbucht -> nicht überbucht -> überbucht0,0081
überbucht -> überbucht -> nicht überbucht0,0081
überbucht -> überbucht -> überbucht0,0009

Einzel-Wahrscheinlichkeiten: P("nicht überbucht")=0,9052; P("überbucht")=0,0948;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,7417)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,0777)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,0777)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,0777)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,7417 + 0,0777 + 0,0777 + 0,0777 = 0,9747


feste Reihenfolge im Binomialkontext

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 5 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 5 Versuchen mit der Formel von Bernoulli berechnen: ( 5 3 ) 0.7 3 0.3 2

Dabei gibt ja 0.7 3 0.3 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 2 Nicht-Treffern und ( 5 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 5 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOO

OXXXO

OOXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ 0.7 3 0.3 2 ≈ 0.0926