Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Bernoulli-Formel vervollständigen (einfach)
Beispiel:
Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,85. Gesucht ist die Wahrscheinlichkeit bei 80 Versuchen genau 12 mal im grünen Bereich zu landen.
Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.
P(X = 12) =
Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 80 Ebenen lösen.
Der Binomialkoeffizient vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 12 mal getroffen und 68 mal nicht getroffen wird. Davon gibt es , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=80 und b=12 sein.
Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser
Pfade an. Da ja in jedem Pfad 12 Treffer und
68 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
⋅
Somit muss d = 0.15, sowie c = 12 und e = 68 sein.
Bernoulli-Formel vervollständigen
Beispiel:
Bei einem Glücksrad beträgt die Wahrscheinlichkeit für den grünen Bereich 10%. Es wird 15 mal gedreht.
Für welches der aufgeführten Ereignisse könnte der Term P = die Wahrscheinlichkeit angeben?
Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.
Man kann relativ gut erkennen, dass es sich hier um die Formel von Bernoulli handeln muss, das heißt also die Wahrscheinlichkeit für genau k Treffer gegeben ist.
In der Basis der ersten Potenz kann man die gegebene Wahrscheinlichkeit für "Es wird in den grünen Bereich gedreht" erkennen, also muss die Hochzahl 14 die Anzahl der Treffer sein und die gesuchte Option ist: Genau 14 mal wird in den grünen Bereich gedreht.
Weil ja in der Basis der ersten Potenz die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 0.9.
Die Hochzahl der ersten Potenz gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.
Die Anzahl der richtigen Pfade (mit 14 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit , also ist a = 14 (hier ist auch a=1 möglich).
Binomial-Aufgabe mit 2 Ereignissen
Beispiel:
Ein Basketballspieler hat eine Trefferquote von 75% und wirft 30 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 15 Versuchen genau 11 mal und von den restlichen Versuchen höchstens 10 mal trifft.
Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 15
Durchgänge:
Die Zufallsgröße X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=15 und p=0.75.
Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als ≈ 0.2252.
Analog betrachten wir nun die restlichen 15 Durchgänge:
Die Zufallsgröße Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=15 und p=0.75.
Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als ≈ 0.3135.
Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:
P = ⋅ = 0.2252 ⋅ 0.3135 ≈ 0.0706
zwei unabhängige Binom.
Beispiel:
Ein Mitarbeiter der Stadtwerke bekommt den Auftrag am Freitag bei 60 und am Samstag bei 50 Haushalten den Gas- und den Stromzähler abzulesen. Als ihn seine Frau fragt, was er denn glaubt, wie viele der Kunden überhaupt zuhause wären und die Tür öffnen würden, sagr er: Ich denke, dass ich am Freitag so zwischen 30 und 38 am Samstag so zwischen 19 und 32 erreichen werde. Tatsächlich ist die Wahrscheinlichkeit, dass ihm die Tür geöffnet wird, am Samstag mit 64% höher als am Freitag mit 49%. Wie groß ist die Wahrscheinlichkeit, dass seine Prognose zutrifft?
(Bitte auf 4 Stellen nach dem Komma runden)
Freitag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=60 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 30 und 38 Treffer bei 60 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.49 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.9909 - 0.5106 ≈ 0.4803 berechnen.
TI-Befehl: binomcdf(60,0.49,38)- binomcdf(60,0.49,29)
Samstag:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit zwischen 19 und 32 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.64 zu erzielen, also .Diese Wahrscheinlichkeit lässt sich als - ≈ 0.5531 - 0.0001 ≈ 0.553 berechnen.
TI-Befehl: binomcdf(50,0.64,32)- binomcdf(50,0.64,18)
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten:
P ≈ 0.4803 ⋅ 0.553 ≈ 0.2656
Kombination Binom.-Baumdiagramm
Beispiel:
Bei einer Fluggesellschaft treten 17% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 108 Tickets für ihr Flugzeug mit 97 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)
Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=108 und unbekanntem Parameter p.
Gesucht ist die Wahrscheinlichkeit für höchstens 97 Treffer bei 108 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.83, also
Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:
Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=108 und p=0.83.
= + + +... + = 0.9832104741482 ≈ 0.9832(TI-Befehl: binomcdf(108,0.83,97))
Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9832) und 'überbucht'(p=0.0168).
Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.
Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'
Ereignis | P |
---|---|
nicht überbucht -> nicht überbucht -> nicht überbucht | |
nicht überbucht -> nicht überbucht -> überbucht | |
nicht überbucht -> überbucht -> nicht überbucht | |
nicht überbucht -> überbucht -> überbucht | |
überbucht -> nicht überbucht -> nicht überbucht | |
überbucht -> nicht überbucht -> überbucht | |
überbucht -> überbucht -> nicht überbucht | |
überbucht -> überbucht -> überbucht |
Einzel-Wahrscheinlichkeiten: P("nicht überbucht")=; P("überbucht")=;
Die relevanten Pfade sind:- 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
- 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=)
- 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=)
- 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=)
Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:
+ + + =
feste Reihenfolge im Binomialkontext
Beispiel:
In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 9 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Bestimme die Wahrscheinlichkeit, dass dabei genau 3 blaue Kugeln gezogen werden und diese aber unmittelbar hintereinander gezogen werden (also ohne, dass dazwischen mal eine rote gezogen wird).
Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ⋅ ⋅
Dabei gibt ja ⋅ die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 6 Nicht-Treffern und die Anzahl solcher Pfade an.
Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:
XXXOOOOOO
OXXXOOOOO
OOXXXOOOO
OOOXXXOOO
OOOOXXXOO
OOOOOXXXO
OOOOOOXXX
Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit: P = 7 ⋅ ⋅ ≈ 0.0018