Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

In einer Urne sind 7 blaue und 3 rote Kugeln. Es wird 40 mal eine Kugel gezogen. Nach jedem Ziehen wird die Kugel wieder zurückgelegt. Gesucht ist die Wahrscheinlichkeit dass genau 19 blaue Kugeln gezogen werden.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 19) = ( a b ) dc 0.7e

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 19 mal getroffen und 21 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=19 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 40 19 ) Pfade an. Da ja in jedem Pfad 19 Treffer und 21 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.7190.321 oder eben (einfach vertauscht) 0.3210.719

Somit muss d = 0.3, sowie c = 21 und e = 19 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 15 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 5 6 )15 + ( 15 a ) ( 1 6 )1 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand ( 5 6 )15 steht ja die Gegenwahrscheinlichkeit in der Basis und die Gesamtanzahl n=15 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 0 Treffer bzw. 15 Nicht-Treffer an, also P(X=0) bzw. P(Y=15).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )1, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 1 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 1 Treffer sein, also P(X=1) bzw. P(Y=14).

X: Treffer:
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Y: keine Treffer:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=0)+P(X=1)=P(X≤1) bzw. P(Y≥14)

Somit ist die gesuchte Option: Höchstens 1 mal wird eine 6 gewürfelt oder eben gleich bedeutend: Mehr als 13 mal wird keine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 15 Versuchen die Anzahl der "Nicht-Treffer" mit c = 14 bestimmen.

Die Anzahl der richtigen Pfade (mit 1 Treffer und 14 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 15 1 ) , also ist a = 1 (hier ist auch a=14 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,5. Es wird 70 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:Von den ersten 10 Versuchen landen genau 5 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 27 mal auf grün gedreht.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 10 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=10 und p=0.5.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.510 (X=5) ≈ 0.2461.

Analog betrachten wir nun die restlichen 60 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=60 und p=0.5.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.560 (Y27) = 1- P0.560 (Y26) ≈ 0.8169.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.510 (X=5) P0.560 (Y27) = 0.2461 ⋅ 0.8169 ≈ 0.201

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 40%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 4 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 4 kommen kann:

  • 1 mal unten und 3 mal oben
  • 2 mal unten und 2 mal oben
  • 3 mal unten und 1 mal oben

1 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=1) = ( 3 1 ) 0.51 0.52 ≈ 0.375
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=3) = ( 3 3 ) 0.43 0.60 ≈ 0.064
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.375 ⋅ 0.064 = 0.024

2 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=2) = ( 3 2 ) 0.52 0.51 ≈ 0.375
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=2) = ( 3 2 ) 0.42 0.61 ≈ 0.288
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.288 = 0.108

3 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=3) = ( 3 3 ) 0.53 0.50 ≈ 0.125
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.4.

P0.43 (X=1) = ( 3 1 ) 0.41 0.62 ≈ 0.432
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.125 ⋅ 0.432 = 0.054


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.024 + 0.108 + 0.054 = 0.186

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 16% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 103 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=103 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 103 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.84, also P0.84103 (X93)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=103 und p=0.84.

P0.84103 (X93) = P0.84103 (X=0) + P0.84103 (X=1) + P0.84103 (X=2) +... + P0.84103 (X=93) = 0.97589878117585 ≈ 0.9759
(TI-Befehl: binomcdf(103,0.84,93))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.9759) und 'überbucht'(p=0.0241).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,9294
nicht überbucht -> nicht überbucht -> überbucht0,023
nicht überbucht -> überbucht -> nicht überbucht0,023
nicht überbucht -> überbucht -> überbucht0,0006
überbucht -> nicht überbucht -> nicht überbucht0,023
überbucht -> nicht überbucht -> überbucht0,0006
überbucht -> überbucht -> nicht überbucht0,0006
überbucht -> überbucht -> überbucht0

Einzel-Wahrscheinlichkeiten: P("nicht überbucht")=0,9759; P("überbucht")=0,0241;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,9294)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,023)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,023)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,023)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,9294 + 0,023 + 0,023 + 0,023 = 0,9983


feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 30% wirft 9 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 9 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 9 Versuchen mit der Formel von Bernoulli berechnen: ( 9 3 ) 0.3 3 0.7 6

Dabei gibt ja 0.3 3 0.7 6 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 6 Nicht-Treffern und ( 9 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 9 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOOOO

OXXXOOOOO

OOXXXOOOO

OOOXXXOOO

OOOOXXXOO

OOOOOXXXO

OOOOOOXXX

Es gibt also genau 7 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 7 ⋅ 0.3 3 0.7 6 ≈ 0.0222