Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = -1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-2) in den Zähler und die Differenz der x-Werte -1 - ( - 2 ) in den Nenner schreiben:

f(-1) - f(-2) -1 - ( - 2 )

= -2 - ( - 5 ) -1 - ( - 2 )

= 3 1

= 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 +2 x 2 -2 . Bestimme den Differenzenquotient von f im Intervall I=[-1;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = ( -1 ) 3 +2 ( -1 ) 2 -2 = ( -1 ) +21 -2 = -1 und
f(1) = 1 3 +2 1 2 -2 = 1 +21 -2 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-1) in den Zähler und die Differenz der x-Werte 1 - ( - 1 ) in den Nenner schreiben:

f(1) - f(-1) 1 - ( - 1 )

= 1 - ( - 1 ) 1 - ( - 1 )

= 2 2

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=1 und x2=3,5 hat bei einer Funktion f den Wert 1.Es gilt: f(1) = 3. Bestimme f(3,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(3,5) - f(1) 3,5 - 1 = 1

f(3,5) = 3 eingestezt (und Nenner verrechnet):

f(3,5) - 3 2,5 = 1 |⋅ 2,5

f(3,5) -3 = 2,5 |+3

f(3,5) = 5.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -1 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= -2 x 2 -1 - ( -2 2 2 -1 ) x -2

= -2 x 2 -1 +2 2 2 +1 x -2

= -2 x 2 +2 2 2 x -2

= -2( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -2 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -2( x +2 ) = -2( 2 +2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= -2 ( 2 + h ) 2 -1 - ( -2 2 2 -1 ) h

= -2 ( 2 + h ) 2 -1 +2 2 2 +1 h

= -2 ( h +2 ) 2 +8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -2( h 2 +4h +4 ) +8 h

= -2 h 2 -8h -8 +8 h

= -2 h 2 -8h h

= -2 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -2( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -2( h +4 ) = -2(0 +4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 4 -3 x 2 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = x 4 -3 x 2 - ( ( -1 ) 4 -3 ( -1 ) 2 ) x +1 = x 4 -3 x 2 -1 +3 x +1 = x 4 -3 x 2 +2 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: ( -0,9 ) 4 -3 ( -0,9 ) 2 +2 0,1 ≈ 2.261

x = -0.99: ( -0,99 ) 4 -3 ( -0,99 ) 2 +2 0,01 ≈ 2.0296

x = -0.999: ( -0,999 ) 4 -3 ( -0,999 ) 2 +2 0,001 ≈ 2.003

x = -0.9999: ( -0,9999 ) 4 -3 ( -0,9999 ) 2 +2 0,0001 ≈ 2.0003

x = -0.99999: ( -1 ) 4 -3 ( -1 ) 2 +2 0.00001 ≈ 2.00003

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 x 4 -3 x 2 +2 x +1 2

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 -4 - ( 4 u 2 -4 ) x - u

= 4 x 2 -4 -4 u 2 +4 x - u

= 4 x 2 -4 u 2 x - u

= 4( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4( x + u) = 4 · ( u + u ) = 8u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x +4 - ( 2 u +4 ) x - u

= 2 x +4 -2 u -4 x - u

= 2 x -2 u x - u

= 2( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= 2( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 2 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2 x + u = 2 u + u = 1 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 1 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 1 x .