Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[2;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 2 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(2) in den Zähler und die Differenz der x-Werte 3 - 2 in den Nenner schreiben:

f(3) - f(2) 3 - 2

= -2 - 2 3 - 2

= -4 1

= -4

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -3 . Bestimme den Differenzenquotient von f im Intervall I=[-1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = ( -1 ) 2 -3 = 1 -3 = -2 und
f(2) = 2 2 -3 = 4 -3 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-1) in den Zähler und die Differenz der x-Werte 2 - ( - 1 ) in den Nenner schreiben:

f(2) - f(-1) 2 - ( - 1 )

= 1 - ( - 2 ) 2 - ( - 1 )

= 3 3

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=2 und x2=4,5 hat bei einer Funktion f den Wert 5.Es gilt: f(2) = 2. Bestimme f(4,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(4,5) - f(2) 4,5 - 2 = 5

f(4,5) = 2 eingestezt (und Nenner verrechnet):

f(4,5) - 2 2,5 = 5 |⋅ 2,5

f(4,5) -2 = 12,5 |+2

f(4,5) = 14.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -4 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= -3 x 2 -4 - ( -3 1 2 -4 ) x -1

= -3 x 2 -4 +3 1 2 +4 x -1

= -3 x 2 +3 1 2 x -1

= -3( x 2 - 1 2 ) x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= -3 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 -3( x +1 ) = -3( 1 +1 ) = -6

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= -3 ( 1 + h ) 2 -4 - ( -3 1 2 -4 ) h

= -3 ( 1 + h ) 2 -4 +3 1 2 +4 h

= -3 ( h +1 ) 2 +3 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -3( h 2 +2h +1 ) +3 h

= -3 h 2 -6h -3 +3 h

= -3 h 2 -6h h

= -3 h ( h +2 ) h

Jetzt können wir mit h kürzen:

= -3( h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 -3( h +2 ) = -3(0 +2 ) = -6

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x . Bestimme f'(4) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 4 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 4 und einem allgemeinen x auf:

f(x) - f(4) x - 4 = 3 x -3 4 x -4 = 3 x -6 x -4

Jetzt setzen wir Werte für x ein, die sich immer mehr der 4 annähern:

x = 4.1: 3 4,1 -6 0,1 ≈ 0.74537

x = 4.01: 3 4,01 -6 0,01 ≈ 0.74953

x = 4.001: 3 4,001 -6 0,001 ≈ 0.74995

x = 4.0001: 3 4,0001 -6 0,0001 ≈ 0.75

x = 4.00001: 3 4 -6 0.00001 ≈ 0.75

Wir können nun also eine Vermutung für den Grenzwert für x → 4 bestimmen:

f'(4) = lim x → 4 f(x) - f(4) x - 4 = lim x → 4 3 x -6 x -4 0.75

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 -2 - ( -5 u 2 -2 ) x - u

= -5 x 2 -2 +5 u 2 +2 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x -5 - ( - u -5 ) x - u

= - x -5 + u +5 x - u

= - x + u x - u

= -( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -1 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -1 x + u = -1 u + u = - 1 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 1 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 1 2 x .