Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-2) in den Zähler und die Differenz der x-Werte 0 - ( - 2 ) in den Nenner schreiben:

f(0) - f(-2) 0 - ( - 2 )

= 1 - ( - 1 ) 0 - ( - 2 )

= 2 2

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +3x +1 . Bestimme den Differenzenquotient von f im Intervall I=[-3;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = -1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = ( -3 ) 2 +3( -3 ) +1 = 9 -9 +1 = 1 und
f(-1) = ( -1 ) 2 +3( -1 ) +1 = 1 -3 +1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-3) in den Zähler und die Differenz der x-Werte -1 - ( - 3 ) in den Nenner schreiben:

f(-1) - f(-3) -1 - ( - 3 )

= -1 - 1 -1 - ( - 3 )

= -2 2

= -1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-2 und x2=-0,5 hat bei einer Funktion f den Wert 3.Es gilt: f(-2) = -3. Bestimme f(-0,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(-0,5) - f(-2) -0,5 - ( - 2 ) = 3

f(-0,5) = -3 eingestezt (und Nenner verrechnet):

f(-0,5) - ( - 3 ) 1,5 = 3 |⋅ 1,5

f(-0,5) +3 = 4,5 |-3

f(-0,5) = 1.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -5 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= 2 x 2 -5 - ( 2 ( -2 ) 2 -5 ) x +2

= 2 x 2 -5 -2 ( -2 ) 2 +5 x +2

= 2 x 2 -2 ( -2 ) 2 x +2

= 2( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 2 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 2( x -2 ) = 2( -2 -2 ) = -8

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= 2 ( -2 + h ) 2 -5 - ( 2 ( -2 ) 2 -5 ) h

= 2 ( -2 + h ) 2 -5 -2 ( -2 ) 2 +5 h

= 2 ( h -2 ) 2 -8 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 2( h 2 -4h +4 ) -8 h

= 2 h 2 -8h +8 -8 h

= 2 h 2 -8h h

= 2 h ( h -4 ) h

Jetzt können wir mit h kürzen:

= 2( h -4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 2( h -4 ) = 2(0 -4 ) = -8

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 3 + x . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = 3 x 3 + x - ( 3 ( -2 ) 3 -2 ) x +2 = 3 x 3 + x +24 +2 x +2 = 3 x 3 + x +26 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: 3 ( -1,9 ) 3 -1,9 +26 0,1 ≈ 35.23

x = -1.99: 3 ( -1,99 ) 3 -1,99 +26 0,01 ≈ 36.8203

x = -1.999: 3 ( -1,999 ) 3 -1,999 +26 0,001 ≈ 36.982

x = -1.9999: 3 ( -1,9999 ) 3 -1,9999 +26 0,0001 ≈ 36.9982

x = -1.99999: 3 ( -2 ) 3 -1,99999 +26 0.00001 ≈ 36.99982

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 3 x 3 + x +26 x +2 37

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 -3 - ( -2 u 2 -3 ) x - u

= -2 x 2 -3 +2 u 2 +3 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x 2 - x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 4 x 2 - x - ( 4 u 2 - u) x - u

= 4 x 2 - x -4 u 2 + u x - u

= 4 x 2 -4 u 2 - x + u x - u

= 4( x 2 - u 2 ) - ( x - u ) x - u

= 4( x 2 - u 2 ) x - u + -( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 4 ( x - u ) · ( x + u ) x - u + -( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 4 · ( x + u ) -1

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 4 · ( x + u ) -1 = 4 · ( u + u ) -1 = 8u -1

Da die Ableitung an jeder Stelle x=u immer f'(u) = 8u -1 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 8x -1 .