Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-1) in den Zähler und die Differenz der x-Werte 2 - ( - 1 ) in den Nenner schreiben:

f(2) - f(-1) 2 - ( - 1 )

= -3 - 3 2 - ( - 1 )

= -6 3

= -2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -2x +2 . Bestimme den Differenzenquotient von f im Intervall I=[-3;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = 0 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = - ( -3 ) 2 -2( -3 ) +2 = -9 +6 +2 = -1 und
f(0) = - 0 2 -20 +2 = -0 +0 +2 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-3) in den Zähler und die Differenz der x-Werte 0 - ( - 3 ) in den Nenner schreiben:

f(0) - f(-3) 0 - ( - 3 )

= 2 - ( - 1 ) 0 - ( - 3 )

= 3 3

= 1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 15 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 15

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 15 |⋅ 1 5

f( 1 5 ) -0 = 3 |+0

f( 1 5 ) = 3

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -5 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= - x 2 -5 - ( - ( -2 ) 2 -5 ) x +2

= - x 2 -5 + ( -2 ) 2 +5 x +2

= - x 2 + ( -2 ) 2 x +2

= -( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= -1 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -( x -2 ) = -( -2 -2 ) = 4

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= - ( -2 + h ) 2 -5 - ( - ( -2 ) 2 -5 ) h

= - ( -2 + h ) 2 -5 + ( -2 ) 2 +5 h

= - ( h -2 ) 2 +4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -4h +4 ) +4 h

= - h 2 +4h -4 +4 h

= - h 2 +4h h

= h ( -h +4 ) h

Jetzt können wir mit h kürzen:

= -h +4

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 -h +4 = -0 +4 = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = 3 x 2 - 3 2 2 x -2 = 3 x 2 - 3 4 x -2 = - 3 4 + 3 x 2 x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: - 3 4 + 3 2,1 2 0,1 ≈ -0.69728

x = 2.01: - 3 4 + 3 2,01 2 0,01 ≈ -0.74441

x = 2.001: - 3 4 + 3 2,001 2 0,001 ≈ -0.74944

x = 2.0001: - 3 4 + 3 2,0001 2 0,0001 ≈ -0.74994

x = 2.00001: - 3 4 + 3 2 2 0.00001 ≈ -0.74999

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 - 3 4 + 3 x 2 x -2 -0.75

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 -1 - ( 3 u 2 -1 ) x - u

= 3 x 2 -1 -3 u 2 +1 x - u

= 3 x 2 -3 u 2 x - u

= 3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3( x + u) = 3 · ( u + u ) = 6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +4 - ( -5 u 2 +4 ) x - u

= -5 x 2 +4 +5 u 2 -4 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .