Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= 1 - ( - 2 ) 3 - 0

= 3 3

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 + x 2 +1 . Bestimme den Differenzenquotient von f im Intervall I=[-1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = - ( -1 ) 3 + ( -1 ) 2 +1 = -( -1 ) + 1 +1 = 3 und
f(2) = - 2 3 + 2 2 +1 = -8 + 4 +1 = -3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-1) in den Zähler und die Differenz der x-Werte 2 - ( - 1 ) in den Nenner schreiben:

f(2) - f(-1) 2 - ( - 1 )

= -3 - 3 2 - ( - 1 )

= -6 3

= -2

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 35 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 35

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 35 |⋅ 1 3

f( 1 3 ) -0 = 35 3 |+0

f( 1 3 ) ≈ 11.667

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -2 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= 3 x 2 -2 - ( 3 2 2 -2 ) x -2

= 3 x 2 -2 -3 2 2 +2 x -2

= 3 x 2 -3 2 2 x -2

= 3( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= 3 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 3( x +2 ) = 3( 2 +2 ) = 12

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= 3 ( 2 + h ) 2 -2 - ( 3 2 2 -2 ) h

= 3 ( 2 + h ) 2 -2 -3 2 2 +2 h

= 3 ( h +2 ) 2 -12 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 3( h 2 +4h +4 ) -12 h

= 3 h 2 +12h +12 -12 h

= 3 h 2 +12h h

= 3 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= 3( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 3( h +4 ) = 3(0 +4 ) = 12

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 4 x . Bestimme f'(4) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 4 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 4 und einem allgemeinen x auf:

f(x) - f(4) x - 4 = 4 x -4 4 x -4 = 4 x -8 x -4

Jetzt setzen wir Werte für x ein, die sich immer mehr der 4 annähern:

x = 4.1: 4 4,1 -8 0,1 ≈ 0.99383

x = 4.01: 4 4,01 -8 0,01 ≈ 0.99938

x = 4.001: 4 4,001 -8 0,001 ≈ 0.99994

x = 4.0001: 4 4,0001 -8 0,0001 ≈ 0.99999

x = 4.00001: 4 4 -8 0.00001 ≈ 1

Wir können nun also eine Vermutung für den Grenzwert für x → 4 bestimmen:

f'(4) = lim x → 4 f(x) - f(4) x - 4 = lim x → 4 4 x -8 x -4 1

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 5 x 2 +5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 5 x 2 +5 - ( 5 u 2 +5 ) x - u

= 5 x 2 +5 -5 u 2 -5 x - u

= 5 x 2 -5 u 2 x - u

= 5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 5( x + u) = 5 · ( u + u ) = 10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 -5x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 -5x - ( -5 u 2 -5u) x - u

= -5 x 2 -5x +5 u 2 +5u x - u

= -5 x 2 +5 u 2 -5x +5u x - u

= -5( x 2 - u 2 )-5( x - u ) x - u

= -5( x 2 - u 2 ) x - u + -5( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u + -5( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u ) -5

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5 · ( x + u ) -5 = -5 · ( u + u ) -5 = -10u -5

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u -5 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x -5 .