Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = 0 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-2) in den Zähler und die Differenz der x-Werte 0 - ( - 2 ) in den Nenner schreiben:

f(0) - f(-2) 0 - ( - 2 )

= 2 - ( - 2 ) 0 - ( - 2 )

= 4 2

= 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x +2 . Bestimme den Differenzenquotient von f im Intervall I=[-2;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = -2 +2 = 0 = 0 und
f(2) = 2 +2 = 4 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-2) in den Zähler und die Differenz der x-Werte 2 - ( - 2 ) in den Nenner schreiben:

f(2) - f(-2) 2 - ( - 2 )

= 2 - 0 2 - ( - 2 )

= 2 4

= 1 2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-2 und x2=-1,5 hat bei einer Funktion f den Wert 3.Es gilt: f(-2) = -3. Bestimme f(-1,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(-1,5) - f(-2) -1,5 - ( - 2 ) = 3

f(-1,5) = -3 eingestezt (und Nenner verrechnet):

f(-1,5) - ( - 3 ) 0,5 = 3 |⋅ 0,5

f(-1,5) +3 = 1,5 |-3

f(-1,5) = -1.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -3 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= - x 2 -3 - ( - ( -2 ) 2 -3 ) x +2

= - x 2 -3 + ( -2 ) 2 +3 x +2

= - x 2 + ( -2 ) 2 x +2

= -( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= -1 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 -( x -2 ) = -( -2 -2 ) = 4

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= - ( -2 + h ) 2 -3 - ( - ( -2 ) 2 -3 ) h

= - ( -2 + h ) 2 -3 + ( -2 ) 2 +3 h

= - ( h -2 ) 2 +4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -4h +4 ) +4 h

= - h 2 +4h -4 +4 h

= - h 2 +4h h

= h ( -h +4 ) h

Jetzt können wir mit h kürzen:

= -h +4

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 -h +4 = -0 +4 = 4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x . Bestimme f'(4) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 4 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 4 und einem allgemeinen x auf:

f(x) - f(4) x - 4 = -2 x +2 4 x -4 = -2 x +4 x -4

Jetzt setzen wir Werte für x ein, die sich immer mehr der 4 annähern:

x = 4.1: -2 4,1 +4 0,1 ≈ -0.49691

x = 4.01: -2 4,01 +4 0,01 ≈ -0.49969

x = 4.001: -2 4,001 +4 0,001 ≈ -0.49997

x = 4.0001: -2 4,0001 +4 0,0001 ≈ -0.5

x = 4.00001: -2 4 +4 0.00001 ≈ -0.5

Wir können nun also eine Vermutung für den Grenzwert für x → 4 bestimmen:

f'(4) = lim x → 4 f(x) - f(4) x - 4 = lim x → 4 -2 x +4 x -4 -0.5

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 -2 - ( u 2 -2 ) x - u

= x 2 -2 - u 2 +2 x - u

= x 2 - u 2 x - u

= x 2 - u 2 x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u x + u = 1 · ( u + u ) = 2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 1 x +3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 1 x +3 - ( 1 u +3 ) x - u

= 1 x +3 - 1 u -3 x - u

= 1 x - 1 u x - u

= u x · u + -x x · u x - u

= u - x x · u x - u

= -x + u u · x x - u 1

Beim Doppelbruch multipliziert man den Zähler (bei dem man noch -1 ausklammern kann) mit dem Kehrbruich des Nenners:

= -( x - u) x · u · 1 x - u

Jetzt lässt sich der Nenner x - u diagonal rauskürzen:

= - 1 x u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u - 1 x u = -1 u · u = - 1 u 2

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 1 u 2 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 1 x 2 .