Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -1 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(-1) in den Zähler und die Differenz der x-Werte 2 - ( - 1 ) in den Nenner schreiben:

f(2) - f(-1) 2 - ( - 1 )

= 1 - ( - 2 ) 2 - ( - 1 )

= 3 3

= 1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 + x +3 . Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 3 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 2 +0 +3 = -0 +0 +3 = 3 und
f(3) = - 3 2 +3 +3 = -9 +3 +3 = -3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= -3 - 3 3 - 0

= -6 3

= -2

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 20 Minuten seiner Fahrt 15 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 20 min eben 20 60 h = 1 3 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 3 ) - f(0) 1 3 - 0 = 15

f( 1 3 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 3 ) - 0 1 3 = 15 |⋅ 1 3

f( 1 3 ) -0 = 5 |+0

f( 1 3 ) = 5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +5 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= - x 2 +5 - ( - ( -1 ) 2 +5 ) x +1

= - x 2 +5 + ( -1 ) 2 -5 x +1

= - x 2 + ( -1 ) 2 x +1

= -( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -( x -1 ) = -( -1 -1 ) = 2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= - ( -1 + h ) 2 +5 - ( - ( -1 ) 2 +5 ) h

= - ( -1 + h ) 2 +5 + ( -1 ) 2 -5 h

= - ( h -1 ) 2 +1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -2h +1 ) +1 h

= - h 2 +2h -1 +1 h

= - h 2 +2h h

= h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= -h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 -h +2 = -0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = 2 x - 2 ( -1 ) x +1 = 2 x +2 x +1 = 2 + 2 x x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: 2 + 2 ( -0,9 ) 0,1 ≈ -2.22222

x = -0.99: 2 + 2 ( -0,99 ) 0,01 ≈ -2.0202

x = -0.999: 2 + 2 ( -0,999 ) 0,001 ≈ -2.002

x = -0.9999: 2 + 2 ( -0,9999 ) 0,0001 ≈ -2.0002

x = -0.99999: 2 + 2 ( -1 ) 0.00001 ≈ -2.00002

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 2 + 2 x x +1 -2

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -2 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -2 x 2 -3 - ( -2 u 2 -3 ) x - u

= -2 x 2 -3 +2 u 2 +3 x - u

= -2 x 2 +2 u 2 x - u

= -2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -2( x + u) = -2 · ( u + u ) = -4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x +2 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -3 x +2 - ( -3 u +2 ) x - u

= -3 x +2 +3 u -2 x - u

= -3 x +3 u x - u

= -3( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -3( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -3 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -3 x + u = -3 u + u = - 3 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 3 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 3 2 x .