Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(1) in den Zähler und die Differenz der x-Werte 2 - 1 in den Nenner schreiben:

f(2) - f(1) 2 - 1

= 3 - ( - 4 ) 2 - 1

= 7 1

= 7

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 +4 . Bestimme den Differenzenquotient von f im Intervall I=[0;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 2 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = - 0 3 +4 = -0 +4 = 4 und
f(2) = - 2 3 +4 = -8 +4 = -4
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(0) in den Zähler und die Differenz der x-Werte 2 - 0 in den Nenner schreiben:

f(2) - f(0) 2 - 0

= -4 - 4 2 - 0

= -8 2

= -4

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 25 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 25

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 25 |⋅ 1 5

f( 1 5 ) -0 = 5 |+0

f( 1 5 ) = 5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -2 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= 3 x 2 -2 - ( 3 ( -2 ) 2 -2 ) x +2

= 3 x 2 -2 -3 ( -2 ) 2 +2 x +2

= 3 x 2 -3 ( -2 ) 2 x +2

= 3( x 2 - ( -2 ) 2 ) x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 3 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 3( x -2 ) = 3( -2 -2 ) = -12

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= 3 ( -2 + h ) 2 -2 - ( 3 ( -2 ) 2 -2 ) h

= 3 ( -2 + h ) 2 -2 -3 ( -2 ) 2 +2 h

= 3 ( h -2 ) 2 -12 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= 3( h 2 -4h +4 ) -12 h

= 3 h 2 -12h +12 -12 h

= 3 h 2 -12h h

= 3 h ( h -4 ) h

Jetzt können wir mit h kürzen:

= 3( h -4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 3( h -4 ) = 3(0 -4 ) = -12

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 +3 x 2 . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = x 3 +3 x 2 - ( ( -2 ) 3 +3 ( -2 ) 2 ) x +2 = x 3 +3 x 2 +8 -12 x +2 = x 3 +3 x 2 -4 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: ( -1,9 ) 3 +3 ( -1,9 ) 2 -4 0,1 ≈ -0.29

x = -1.99: ( -1,99 ) 3 +3 ( -1,99 ) 2 -4 0,01 ≈ -0.0299

x = -1.999: ( -1,999 ) 3 +3 ( -1,999 ) 2 -4 0,001 ≈ -0.003

x = -1.9999: ( -1,9999 ) 3 +3 ( -1,9999 ) 2 -4 0,0001 ≈ -0.0003

x = -1.99999: ( -2 ) 3 +3 ( -2 ) 2 -4 0.00001 ≈ -3.0E-5

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 x 3 +3 x 2 -4 x +2 0

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 -4 - ( 2 u 2 -4 ) x - u

= 2 x 2 -4 -2 u 2 +4 x - u

= 2 x 2 -2 u 2 x - u

= 2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2( x + u) = 2 · ( u + u ) = 4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x -4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x -4 - ( u -4 ) x - u

= x -4 - u +4 x - u

= x - u x - u

= x - u x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= x - u ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= x - u ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= 1 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 x + u = 1 u + u = 1 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 1 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 1 2 x .