Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-2;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -2 und x2 = 1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-2) in den Zähler und die Differenz der x-Werte 1 - ( - 2 ) in den Nenner schreiben:

f(1) - f(-2) 1 - ( - 2 )

= 3 - ( - 3 ) 1 - ( - 2 )

= 6 3

= 2

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x . Bestimme den Differenzenquotient von f im Intervall I=[0;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = 0 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(0) = 0 = 0 = 0 und
f(1) = 1 = 1 = 1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(0) in den Zähler und die Differenz der x-Werte 1 - 0 in den Nenner schreiben:

f(1) - f(0) 1 - 0

= 1 - 0 1 - 0

= 1 1

= 1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-2 und x2=-1,5 hat bei einer Funktion f den Wert 4.Es gilt: f(-2) = 1. Bestimme f(-1,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(-1,5) - f(-2) -1,5 - ( - 2 ) = 4

f(-1,5) = 1 eingestezt (und Nenner verrechnet):

f(-1,5) - 1 0,5 = 4 |⋅ 0,5

f(-1,5) -1 = 2 |+1

f(-1,5) = 3

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -1 . Berechne f'(1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1

= x 2 -1 - ( 1 2 -1 ) x -1

= x 2 -1 - 1 2 +1 x -1

= x 2 - 1 2 x -1

= x 2 - 1 2 x -1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x +1 ) · ( x -1 ) x -1

Jetzt lässt sich der Nenner x -1 rauskürzen:

= 1 · ( x +1 )

Jetzt können wir den Grenzwert für x → 1 leicht bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 x +1 = 1 +1 = 2

2. Weg

Wir stellen den Differenzenquotient zwischen 1 + h und 1 auf:

f(1+h) - f(1) h

= ( 1 + h ) 2 -1 - ( 1 2 -1 ) h

= ( 1 + h ) 2 -1 - 1 2 +1 h

= ( h +1 ) 2 -1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 +2h +1 -1 h

= h 2 +2h h

= h ( h +2 ) h

Jetzt können wir mit h kürzen:

= h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(1) = lim h → 0 f(1+h) - f(1) h = lim h → 0 h +2 = 0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = 2 x 2 - 2 ( -2 ) 2 x +2 = 2 x 2 - 1 2 x +2 = - 1 2 + 2 x 2 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: - 1 2 + 2 ( -1,9 ) 2 0,1 ≈ 0.54017

x = -1.99: - 1 2 + 2 ( -1,99 ) 2 0,01 ≈ 0.50378

x = -1.999: - 1 2 + 2 ( -1,999 ) 2 0,001 ≈ 0.50038

x = -1.9999: - 1 2 + 2 ( -1,9999 ) 2 0,0001 ≈ 0.50004

x = -1.99999: - 1 2 + 2 ( -2 ) 2 0.00001 ≈ 0.5

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 - 1 2 + 2 x 2 x +2 0.5

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 -1 - ( u 2 -1 ) x - u

= x 2 -1 - u 2 +1 x - u

= x 2 - u 2 x - u

= x 2 - u 2 x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u x + u = 1 · ( u + u ) = 2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 -3x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 -3x - ( 2 u 2 -3u) x - u

= 2 x 2 -3x -2 u 2 +3u x - u

= 2 x 2 -2 u 2 -3x +3u x - u

= 2( x 2 - u 2 )-3( x - u ) x - u

= 2( x 2 - u 2 ) x - u + -3( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u + -3( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u ) -3

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2 · ( x + u ) -3 = 2 · ( u + u ) -3 = 4u -3

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u -3 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x -3 .