Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;2].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 2 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(2) - f(1) in den Zähler und die Differenz der x-Werte 2 - 1 in den Nenner schreiben:

f(2) - f(1) 2 - 1

= -1 - 0 2 - 1

= -1 1

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 + x -1 . Bestimme den Differenzenquotient von f im Intervall I=[-2;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 0 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = ( -2 ) 2 -2 -1 = 4 -2 -1 = 1 und
f(0) = 0 2 +0 -1 = 0 +0 -1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-2) in den Zähler und die Differenz der x-Werte 0 - ( - 2 ) in den Nenner schreiben:

f(0) - f(-2) 0 - ( - 2 )

= -1 - 1 0 - ( - 2 )

= -2 2

= -1

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=2 und x2=3,5 hat bei einer Funktion f den Wert 5.Es gilt: f(2) = -5. Bestimme f(3,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(3,5) - f(2) 3,5 - 2 = 5

f(3,5) = -5 eingestezt (und Nenner verrechnet):

f(3,5) - ( - 5 ) 1,5 = 5 |⋅ 1,5

f(3,5) +5 = 7,5 |-5

f(3,5) = 2.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -5 . Berechne f'(-2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 )

= x 2 -5 - ( ( -2 ) 2 -5 ) x +2

= x 2 -5 - ( -2 ) 2 +5 x +2

= x 2 - ( -2 ) 2 x +2

= x 2 - ( -2 ) 2 x +2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x -2 ) · ( x +2 ) x +2

Jetzt lässt sich der Nenner x +2 rauskürzen:

= 1 · ( x -2 )

Jetzt können wir den Grenzwert für x → -2 leicht bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 x -2 = -2 -2 = -4

2. Weg

Wir stellen den Differenzenquotient zwischen -2 + h und -2 auf:

f(-2+h) - f(-2) h

= ( -2 + h ) 2 -5 - ( ( -2 ) 2 -5 ) h

= ( -2 + h ) 2 -5 - ( -2 ) 2 +5 h

= ( h -2 ) 2 -4 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 -4h +4 -4 h

= h 2 -4h h

= h ( h -4 ) h

Jetzt können wir mit h kürzen:

= h -4

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-2) = lim h → 0 f(-2+h) - f(-2) h = lim h → 0 h -4 = 0 -4 = -4

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 4 x . Bestimme f'(2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2 = - 4 x + 4 2 x -2 = - 4 x +2 x -2 = 2 - 4 x x -2

Jetzt setzen wir Werte für x ein, die sich immer mehr der 2 annähern:

x = 2.1: 2 - 4 2,1 0,1 ≈ 0.95238

x = 2.01: 2 - 4 2,01 0,01 ≈ 0.99502

x = 2.001: 2 - 4 2,001 0,001 ≈ 0.9995

x = 2.0001: 2 - 4 2,0001 0,0001 ≈ 0.99995

x = 2.00001: 2 - 4 2 0.00001 ≈ 1

Wir können nun also eine Vermutung für den Grenzwert für x → 2 bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 2 - 4 x x -2 1

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x 2 -3 - ( - u 2 -3 ) x - u

= - x 2 -3 + u 2 +3 x - u

= - x 2 + u 2 x - u

= -( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -( x + u) = -1 · ( u + u ) = -2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +5x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= x 2 +5x - ( u 2 +5u) x - u

= x 2 +5x - u 2 -5u x - u

= x 2 - u 2 +5x -5u x - u

= x 2 - u 2 +5( x - u ) x - u

= x 2 - u 2 x - u + 5( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x - u ) · ( x + u ) x - u + 5( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 1 · ( x + u ) +5

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 1 · ( x + u ) +5 = 1 · ( u + u ) +5 = 2u +5

Da die Ableitung an jeder Stelle x=u immer f'(u) = 2u +5 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 2x +5 .