Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[0;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 0 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(0) in den Zähler und die Differenz der x-Werte 3 - 0 in den Nenner schreiben:

f(3) - f(0) 3 - 0

= -1 - 2 3 - 0

= -3 3

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x +4 -4 . Bestimme den Differenzenquotient von f im Intervall I=[-3;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -3 und x2 = 0 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-3) = 2 -3 +4 -4 = 2 1 -4 = -2 und
f(0) = 2 0 +4 -4 = 2 4 -4 = 0
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-3) in den Zähler und die Differenz der x-Werte 0 - ( - 3 ) in den Nenner schreiben:

f(0) - f(-3) 0 - ( - 3 )

= 0 - ( - 2 ) 0 - ( - 3 )

= 2 3

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 30 Minuten seiner Fahrt 20 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 30 min eben 30 60 h = 1 2 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 2 ) - f(0) 1 2 - 0 = 20

f( 1 2 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 2 ) - 0 1 2 = 20 |⋅ 1 2

f( 1 2 ) -0 = 10 |+0

f( 1 2 ) = 10

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 +5 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= -3 x 2 +5 - ( -3 ( -1 ) 2 +5 ) x +1

= -3 x 2 +5 +3 ( -1 ) 2 -5 x +1

= -3 x 2 +3 ( -1 ) 2 x +1

= -3( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -3 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -3( x -1 ) = -3( -1 -1 ) = 6

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= -3 ( -1 + h ) 2 +5 - ( -3 ( -1 ) 2 +5 ) h

= -3 ( -1 + h ) 2 +5 +3 ( -1 ) 2 -5 h

= -3 ( h -1 ) 2 +3 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -3( h 2 -2h +1 ) +3 h

= -3 h 2 +6h -3 +3 h

= -3 h 2 +6h h

= 3 h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= 3( -h +2 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 3( -h +2 ) = 3( -0 +2 ) = 6

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 1 x 3 . Bestimme f'(-1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 ) = - 1 x 3 + 1 ( -1 ) 3 x +1 = - 1 x 3 -1 x +1 = -1 - 1 x 3 x +1

Jetzt setzen wir Werte für x ein, die sich immer mehr der -1 annähern:

x = -0.9: -1 - 1 ( -0,9 ) 3 0,1 ≈ 3.71742

x = -0.99: -1 - 1 ( -0,99 ) 3 0,01 ≈ 3.06102

x = -0.999: -1 - 1 ( -0,999 ) 3 0,001 ≈ 3.00601

x = -0.9999: -1 - 1 ( -0,9999 ) 3 0,0001 ≈ 3.0006

x = -0.99999: -1 - 1 ( -1 ) 3 0.00001 ≈ 3.00006

Wir können nun also eine Vermutung für den Grenzwert für x → -1 bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -1 - 1 x 3 x +1 3

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +4 - ( -5 u 2 +4 ) x - u

= -5 x 2 +4 +5 u 2 -4 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 +4x . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 +4x - ( 3 u 2 +4u) x - u

= 3 x 2 +4x -3 u 2 -4u x - u

= 3 x 2 -3 u 2 +4x -4u x - u

= 3( x 2 - u 2 )+4( x - u ) x - u

= 3( x 2 - u 2 ) x - u + 4( x - u ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u + 4( x - u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u ) +4

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3 · ( x + u ) +4 = 3 · ( u + u ) +4 = 6u +4

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u +4 beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x +4 .