Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[-4;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = -4 und x2 = -1 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-4) in den Zähler und die Differenz der x-Werte -1 - ( - 4 ) in den Nenner schreiben:

f(-1) - f(-4) -1 - ( - 4 )

= 2 - 1 -1 - ( - 4 )

= 1 3

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 - x -1 . Bestimme den Differenzenquotient von f im Intervall I=[-1;1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -1 und x2 = 1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-1) = ( -1 ) 2 - ( -1 ) -1 = 1 +1 -1 = 1 und
f(1) = 1 2 - 1 -1 = 1 -1 -1 = -1
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(1) - f(-1) in den Zähler und die Differenz der x-Werte 1 - ( - 1 ) in den Nenner schreiben:

f(1) - f(-1) 1 - ( - 1 )

= -1 - 1 1 - ( - 1 )

= -2 2

= -1

Differenzenquotient rückwärts

Beispiel:

Die Durchschnittsgeschwindigkeit eines Radfahrers beträgt in den ersten 12 Minuten seiner Fahrt 30 km/h. Wie viele km, ist er dabei gekommen? (Runde auf eine Stelle hinter dem Komma.)

Lösung einblenden

60 min sind 1 h, also sind 12 min eben 12 60 h = 1 5 h.

Die durchschnittliche Änderungsrate - hier: die Durchschnittsgeschwindigkeit - kann man mit dem Differenzenquotient berechnen:

f( 1 5 ) - f(0) 1 5 - 0 = 30

f( 1 5 ) = 0 eingestezt (und Nenner verrechnet):

f( 1 5 ) - 0 1 5 = 30 |⋅ 1 5

f( 1 5 ) -0 = 6 |+0

f( 1 5 ) = 6

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -2 . Berechne f'(2) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen 2 und einem allgemeinen x auf:

f(x) - f(2) x - 2

= -3 x 2 -2 - ( -3 2 2 -2 ) x -2

= -3 x 2 -2 +3 2 2 +2 x -2

= -3 x 2 +3 2 2 x -2

= -3( x 2 - 2 2 ) x -2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x +2 ) · ( x -2 ) x -2

Jetzt lässt sich der Nenner x -2 rauskürzen:

= -3 · ( x +2 )

Jetzt können wir den Grenzwert für x → 2 leicht bestimmen:

f'(2) = lim x → 2 f(x) - f(2) x - 2 = lim x → 2 -3( x +2 ) = -3( 2 +2 ) = -12

2. Weg

Wir stellen den Differenzenquotient zwischen 2 + h und 2 auf:

f(2+h) - f(2) h

= -3 ( 2 + h ) 2 -2 - ( -3 2 2 -2 ) h

= -3 ( 2 + h ) 2 -2 +3 2 2 +2 h

= -3 ( h +2 ) 2 +12 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -3( h 2 +4h +4 ) +12 h

= -3 h 2 -12h -12 +12 h

= -3 h 2 -12h h

= -3 h ( h +4 ) h

Jetzt können wir mit h kürzen:

= -3( h +4 )

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(2) = lim h → 0 f(2+h) - f(2) h = lim h → 0 -3( h +4 ) = -3(0 +4 ) = -12

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= - 4 x 2 . Bestimme f'(-2) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der -2 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen -2 und einem allgemeinen x auf:

f(x) - f(-2) x - ( - 2 ) = - 4 x 2 + 4 ( -2 ) 2 x +2 = - 4 x 2 +1 x +2 = 1 - 4 x 2 x +2

Jetzt setzen wir Werte für x ein, die sich immer mehr der -2 annähern:

x = -1.9: 1 - 4 ( -1,9 ) 2 0,1 ≈ -1.08033

x = -1.99: 1 - 4 ( -1,99 ) 2 0,01 ≈ -1.00755

x = -1.999: 1 - 4 ( -1,999 ) 2 0,001 ≈ -1.00075

x = -1.9999: 1 - 4 ( -1,9999 ) 2 0,0001 ≈ -1.00008

x = -1.99999: 1 - 4 ( -2 ) 2 0.00001 ≈ -1.00001

Wir können nun also eine Vermutung für den Grenzwert für x → -2 bestimmen:

f'(-2) = lim x → -2 f(x) - f(-2) x - ( - 2 ) = lim x → -2 1 - 4 x 2 x +2 -1

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= -5 x 2 +1 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -5 x 2 +1 - ( -5 u 2 +1 ) x - u

= -5 x 2 +1 +5 u 2 -1 x - u

= -5 x 2 +5 u 2 x - u

= -5( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -5 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -5 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -5( x + u) = -5 · ( u + u ) = -10u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -10u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -10x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -3 x 2 -3 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -3 x 2 -3 - ( -3 u 2 -3 ) x - u

= -3 x 2 -3 +3 u 2 +3 x - u

= -3 x 2 +3 u 2 x - u

= -3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -3( x + u) = -3 · ( u + u ) = -6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -6x .