Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= -4 - 4 3 - 1

= -8 2

= -4

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 3 -3 x 2 +2 . Bestimme den Differenzenquotient von f im Intervall I=[-2;0].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -2 und x2 = 0 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-2) = - ( -2 ) 3 -3 ( -2 ) 2 +2 = -( -8 ) -34 +2 = -2 und
f(0) = - 0 3 -3 0 2 +2 = -0 -30 +2 = 2
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(0) - f(-2) in den Zähler und die Differenz der x-Werte 0 - ( - 2 ) in den Nenner schreiben:

f(0) - f(-2) 0 - ( - 2 )

= 2 - ( - 2 ) 0 - ( - 2 )

= 4 2

= 2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=-2 und x2=-1,5 hat bei einer Funktion f den Wert 5.Es gilt: f(-2) = -5. Bestimme f(-1,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(-1,5) - f(-2) -1,5 - ( - 2 ) = 5

f(-1,5) = -5 eingestezt (und Nenner verrechnet):

f(-1,5) - ( - 5 ) 0,5 = 5 |⋅ 0,5

f(-1,5) +5 = 2,5 |-5

f(-1,5) = -2.5

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 -4 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= x 2 -4 - ( ( -1 ) 2 -4 ) x +1

= x 2 -4 - ( -1 ) 2 +4 x +1

= x 2 - ( -1 ) 2 x +1

= x 2 - ( -1 ) 2 x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= 1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 x -1 = -1 -1 = -2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= ( -1 + h ) 2 -4 - ( ( -1 ) 2 -4 ) h

= ( -1 + h ) 2 -4 - ( -1 ) 2 +4 h

= ( h -1 ) 2 -1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= h 2 -2h +1 -1 h

= h 2 -2h h

= h ( h -2 ) h

Jetzt können wir mit h kürzen:

= h -2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 h -2 = 0 -2 = -2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 3 +3x . Bestimme f'(1) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 1 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 1 und einem allgemeinen x auf:

f(x) - f(1) x - 1 = x 3 +3x - ( 1 3 +31 ) x -1 = x 3 +3x -1 -3 x -1 = x 3 +3x -4 x -1

Jetzt setzen wir Werte für x ein, die sich immer mehr der 1 annähern:

x = 1.1: 1,1 3 +31,1 -4 0,1 ≈ 6.31

x = 1.01: 1,01 3 +31,01 -4 0,01 ≈ 6.0301

x = 1.001: 1,001 3 +31,001 -4 0,001 ≈ 6.003

x = 1.0001: 1,0001 3 +31,0001 -4 0,0001 ≈ 6.0003

x = 1.00001: 1 3 +31 -4 0.00001 ≈ 6.00003

Wir können nun also eine Vermutung für den Grenzwert für x → 1 bestimmen:

f'(1) = lim x → 1 f(x) - f(1) x - 1 = lim x → 1 x 3 +3x -4 x -1 6

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= 2 x 2 +5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 2 x 2 +5 - ( 2 u 2 +5 ) x - u

= 2 x 2 +5 -2 u 2 -5 x - u

= 2 x 2 -2 u 2 x - u

= 2( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 2 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 2 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 2( x + u) = 2 · ( u + u ) = 4u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 4u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 4x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= 3 x 2 -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= 3 x 2 -5 - ( 3 u 2 -5 ) x - u

= 3 x 2 -5 -3 u 2 +5 x - u

= 3 x 2 -3 u 2 x - u

= 3( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= 3 ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= 3 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u 3( x + u) = 3 · ( u + u ) = 6u

Da die Ableitung an jeder Stelle x=u immer f'(u) = 6u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = 6x .