Aufgabenbeispiele von Differenzenquotient

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Differenzenquotient aus Graph ablesen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Im Schaubild ist der Graph der Funktion f abgebildet. Bestimme den Differenzenquotient von f im Intervall I=[1;3].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir lesen am Graph die Funktionswerte an den Stellen x1 = 1 und x2 = 3 ab und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(3) - f(1) in den Zähler und die Differenz der x-Werte 3 - 1 in den Nenner schreiben:

f(3) - f(1) 3 - 1

= -1 - 1 3 - 1

= -2 2

= -1

Differenzenquotient aus Term ablesen

Beispiel:

Gegeben ist die Funktion f mit f(x)= x 2 +3x -1 . Bestimme den Differenzenquotient von f im Intervall I=[-4;-1].

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir setzen die Intervallgrenzen x1 = -4 und x2 = -1 in den Funktionsterm ein,
erhalten somit die Funktionswerte
f(-4) = ( -4 ) 2 +3( -4 ) -1 = 16 -12 -1 = 3 und
f(-1) = ( -1 ) 2 +3( -1 ) -1 = 1 -3 -1 = -3
und berechnen den Differenzenquotient, in dem wir die Differenz der Funktionswerte
f(-1) - f(-4) in den Zähler und die Differenz der x-Werte -1 - ( - 4 ) in den Nenner schreiben:

f(-1) - f(-4) -1 - ( - 4 )

= -3 - 3 -1 - ( - 4 )

= -6 3

= -2

Differenzenquotient rückwärts

Beispiel:

Die durchschnittliche Änderungsrate zwischen x1=2 und x2=2,5 hat bei einer Funktion f den Wert 4.Es gilt: f(2) = -2. Bestimme f(2,5).

Lösung einblenden

Die durchschnittliche Änderungsrate kann man mit dem Differenzenquotient berechnen:

f(2,5) - f(2) 2,5 - 2 = 4

f(2,5) = -2 eingestezt (und Nenner verrechnet):

f(2,5) - ( - 2 ) 0,5 = 4 |⋅ 0,5

f(2,5) +2 = 2 |-2

f(2,5) = 0

Ableitung mit Differenzenquotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 +4 . Berechne f'(-1) mithilfe des Differenzenquotienten.

Lösung einblenden

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

1. Weg

Wir stellen den Differenzenquotient zwischen -1 und einem allgemeinen x auf:

f(x) - f(-1) x - ( - 1 )

= - x 2 +4 - ( - ( -1 ) 2 +4 ) x +1

= - x 2 +4 + ( -1 ) 2 -4 x +1

= - x 2 + ( -1 ) 2 x +1

= -( x 2 - ( -1 ) 2 ) x +1

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x -1 ) · ( x +1 ) x +1

Jetzt lässt sich der Nenner x +1 rauskürzen:

= -1 · ( x -1 )

Jetzt können wir den Grenzwert für x → -1 leicht bestimmen:

f'(-1) = lim x → -1 f(x) - f(-1) x - ( - 1 ) = lim x → -1 -( x -1 ) = -( -1 -1 ) = 2

2. Weg

Wir stellen den Differenzenquotient zwischen -1 + h und -1 auf:

f(-1+h) - f(-1) h

= - ( -1 + h ) 2 +4 - ( - ( -1 ) 2 +4 ) h

= - ( -1 + h ) 2 +4 + ( -1 ) 2 -4 h

= - ( h -1 ) 2 +1 h

Jetzt müssen wir die 1. Binomische Formel anwenden: (a+b)² = a² + 2ab + b²:

= -( h 2 -2h +1 ) +1 h

= - h 2 +2h -1 +1 h

= - h 2 +2h h

= h ( -h +2 ) h

Jetzt können wir mit h kürzen:

= -h +2

Jetzt können wir den Grenzwert für h → 0 leicht bestimmen:

f'(-1) = lim h → 0 f(-1+h) - f(-1) h = lim h → 0 -h +2 = -0 +2 = 2

Ableitung mit Differenzenquotient (numerisch)

Beispiel:

Gegeben ist die Funktion f mit f(x)= x . Bestimme f'(4) auf 3 Stellen nach dem Komma genau, indem du Zahlen in den Differenzenquotient einsetzt, die sich der 4 immer mehr annähern.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen 4 und einem allgemeinen x auf:

f(x) - f(4) x - 4 = x - 4 x -4 = x -2 x -4

Jetzt setzen wir Werte für x ein, die sich immer mehr der 4 annähern:

x = 4.1: 4,1 -2 0,1 ≈ 0.24846

x = 4.01: 4,01 -2 0,01 ≈ 0.24984

x = 4.001: 4,001 -2 0,001 ≈ 0.24998

x = 4.0001: 4,0001 -2 0,0001 ≈ 0.25

x = 4.00001: 4 -2 0.00001 ≈ 0.25

Wir können nun also eine Vermutung für den Grenzwert für x → 4 bestimmen:

f'(4) = lim x → 4 f(x) - f(4) x - 4 = lim x → 4 x -2 x -4 0.25

Ableitungsfunktion mit Diff.-Quotient

Beispiel:

Gegeben ist die Funktion f mit f(x)= - x 2 -5 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= - x 2 -5 - ( - u 2 -5 ) x - u

= - x 2 -5 + u 2 +5 x - u

= - x 2 + u 2 x - u

= -( x 2 - u 2 ) x - u

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= - ( x - u ) · ( x + u ) x - u

Jetzt lässt sich der Nenner x - u rauskürzen:

= -1 · ( x + u )

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -( x + u) = -1 · ( u + u ) = -2u

Da die Ableitung an jeder Stelle x=u immer f'(u) = -2u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = -2x .

Ableitungsfunktion mit Diff.-Quotient (schwer)

Beispiel:

Gegeben ist die Funktion f mit f(x)= -4 x +4 . Berechne die Ableitungsfunktion f'(x) mithilfe des Differenzenquotienten an einer allgemeinen Stelle u.

Lösung einblenden

Wir stellen den Differenzenquotient zwischen x und u auf:

f(x) - f(u) x - u

= -4 x +4 - ( -4 u +4 ) x - u

= -4 x +4 +4 u -4 x - u

= -4 x +4 u x - u

= -4( x - u ) x - u

Um Zähler und Nenner ähnlicher zu machen, nutzt man jetzt einen Trick und schreibt ( x ) 2 statt x und ( u ) 2 statt u:

= -4( x - u ) ( x ) 2 - ( u ) 2

Jetzt können wir die 3. Binomische Formel (rückwärts) anwenden: a²-b² = (a-b)(a+b):

= -4( x - u ) ( x - u ) · ( x + u )

Jetzt lässt sich x - u diagonal rauskürzen:

= -4 x + u

Jetzt können wir den Grenzwert für x → u leicht bestimmen, indem wir einfach u für x einsetzen:

f'(u) = lim x → u f(x) - f(u) x - u = lim x → u -4 x + u = -4 u + u = - 2 u

Da die Ableitung an jeder Stelle x=u immer f'(u) = - 2 u beträgt, hat die Ableitungsfunktion f' den Term f'(x) = - 2 x .