Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4s ist es im Punkt B angelangt.
An welchem Ort befindet sich das Flugzeug nach 9s?
Das Bewegungsobjekt legt in 4s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 9 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wie weit ist die Rakete nach 6s geflogen?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 6 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wie hoch ist die Geschwindigkeit der Rakete in km/h?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=550
= 1980
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 470m erreicht?
Das Bewegungsobjekt legt in 1s den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 60m (Änderung in der x3-Koordinate). Um von 50 auf 470m (also 420m) zu steigen (bzw. fallen), muss es also s = 7s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A und fliegt mit einer Geschwindigkeit von 252km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter).
Wann kommt es im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 70.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 70. braucht er für diese Strecke
s = 2s.
Punkt B wird als nach 2s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 1min ist er im Punkt B angelangt.
Welche Höhe hat der Heißluftballon, wenn er 9,24 km zurückgelegt hat?
Das Bewegungsobjekt legt in 1 min den Vektor = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=66
Für die Strecke von 9.24 km braucht es also min
= 140min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 5040 (in m).
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A . Nach 1min ist es im Punkt B angelangt.
Wie weit sind die beiden Flugzeuge nach 2min von einander entfernt?
F2 legt in 1min den Vektor = zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
F1 ist nach 2min an der Stelle P1 = ; F2 an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 32.39 km.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Flugzeuge auf gleicher Höhe?
Das Flugzeug F2 legt in 5min den Vektor
In 1min legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 4 min sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 3min den Vektor
In 1min legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 8min und das Flugzeug F2 nach 1min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 8min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.8 - 0.4 = 2.4 km
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A
Wann hat der Heißluftballon die Höhe von 740m erreicht?
Das Bewegungsobjekt legt in 2min den Vektor
In 1min legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate).
Um von 20 auf 740m (also 720m) zu steigen (bzw. fallen),
muss es also
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 3min den Vektor
In 1min legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 2min und das Flugzeug F2 nach 3min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 2min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
1.7 - 1.6 = 0.1 km