Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4min ist er im Punkt B angelangt.
An welchem Ort befindet sich der Heißluftballon nach 10min?
Das Bewegungsobjekt legt in 4min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 10 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Wie weit ist die Rakete nach 10s geflogen?
Das Bewegungsobjekt legt in 1s den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 10 s befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=90
= 5.4
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 370m erreicht?
Das Bewegungsobjekt legt in 1s den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 10 auf 370m (also 360m) zu steigen (bzw. fallen), muss es also s = 9s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 21,6km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 6.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 6. braucht er für diese Strecke
s = 3s.
Punkt B wird als nach 3s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 4min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B angelangt.
Wie tief ist das Uboot, wenn es 1,44 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)
Das Bewegungsobjekt legt in 4 min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=9
Für die Strecke von 1.44 km braucht es also min
= 160min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -480 (in m).
Abstand zweier Objekte
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A . Nach 1min ist es im Punkt B angelangt.
Wie weit sind die beiden Flugzeuge nach 2min von einander entfernt?
F2 legt in 1min den Vektor = zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
F1 ist nach 2min an der Stelle P1 = ; F2 an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 41.24 km.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 1h den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 10 h sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 4min den Vektor
In 1min legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 3min und das Flugzeug F2 nach 3min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 3min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
2.1 - 1.8 = 0.3 km
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A
Wann hat das Flugzeug die Höhe von 720m erreicht?
Das Bewegungsobjekt legt in 2s den Vektor
In 1s legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate).
Um von 0 auf 720m (also 720m) zu steigen (bzw. fallen),
muss es also
Höhendifferenz der Flugbahnen
Beispiel:
Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch
Ein Beobachter steht direkt senkrecht unter dem scheinbaren Schnittpunkt der beiden Flugbahnen. Wie hoch ist an dieser Stelle der Höhenunterschied der beiden Flugbahnen tatsächlich?
Das Flugzeug F2 legt in 4min den Vektor
In 1min legt es also den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass das Flugzeug F1 nach 8min und das Flugzeug F2 nach 2min an diesem 'x1-x2-Schnittpunkt' ist.
das Flugzeug F1 ist also nach 8min bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
3.9 - 1.4 = 2.5 km