Aufgabenbeispiele von Bewegungsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Ort nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 1min ist er im Punkt B angelangt.
An welchem Ort befindet sich der Heißluftballon nach 3min?
Das Bewegungsobjekt legt in 1min den Vektor = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 3 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Strecke nach t Zeiteinheiten
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 2min ist er im Punkt B angelangt.
Wie weit ist der Heißluftballon nach 12min geflogen?
Das Bewegungsobjekt legt in 2min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 12 min befindet es sich also im
Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Das Bewegungsobjekt hat sich dann von A nach P bewegt, also um den Vektor =. Dessen Länge ist m.
Geschwindigkeit in km/h
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3min ist er im Punkt B angelangt.
Gib die Geschwindigkeit des Heißluftballons in km/h an?
Das Bewegungsobjekt legt in 3min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Dieser Vektor hat die Länge =.
Die Geschwindigkeit ist also
v=30
= 1.8
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 3s ist es im Punkt B angelangt.
Wann hat das Flugzeug die Höhe von 1210m erreicht?
Das Bewegungsobjekt legt in 3s den Vektor = zurück.
In 1s legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 40m (Änderung in der x3-Koordinate). Um von 10 auf 1210m (also 1200m) zu steigen (bzw. fallen), muss es also s = 30s lang steigen (bzw. sinken).
Geschwindigkeit rückwärts
Beispiel:
Eine Seilbahn fährt zum Zeitpunkt t=0 im Punkt A in der Bergstation los und fährt mit einer konstanten Geschwindigkeit von 39,6km/h in Richtung des Punktes B (alle Koordinatenangaben in Meter). Ihre Bewegungsbahn soll als geradlinig angenommen werden.
Wann kommt die Seilbahngondel im Punkt B an?
Zuerst rechnen wir die Geschwindigkeit von km/h in um: v=
= 11.
Die Länge des Vektors = ist m.
Bei einer Geschwindigkeit von 11. braucht er für diese Strecke
s = 4s.
Punkt B wird als nach 4s erreicht.
Höhe nach x Kilometern
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Da der Wind extrem gleichmäßig ist, fliegt er mit konstanter Geschwindigkeit auf einer geradlinigen Bahn. Nach 4min ist er im Punkt B angelangt.
Welche Höhe hat der Heißluftballon, wenn er 5,76 km zurückgelegt hat?
Das Bewegungsobjekt legt in 4 min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Geradengleichung
beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge =.
Die Geschwindigkeit ist also v=36
Für die Strecke von 5.76 km braucht es also min
= 160min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
=
= ,
also im Punkt P.
Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also 1920 (in m).
Abstand zweier Objekte
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A (alle Angaben in Meter). Nach 5min ist er im Punkt B angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch . (alle Koordinaten in m; t in Minuten seit Beobachtungsbeginn).
Wie weit sind der Heißluftballon und die Drohne nach 2min von einander entfernt?
Der Heißluftballon legt in 5min den Vektor = zurück.
In 1min legt es also den Vektor ⋅ = zurück.
Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2:
dargestellt werden,
wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.
Die Drohne ist nach 2min an der Stelle P1 = ; Der Heißluftballon an der Stelle P2 = .
= =
d=|| = =
Der Abstand ist also ca. 63.25 m.
Gleiche Höhe bei 2 Objekten
Beispiel:
Die Position eines Heißluftballon F1 zum Zeitpunkt t ist gegeben durch
Wann sind die beiden Heißluftballone auf gleicher Höhe?
Der Heißluftballon F2 legt in 2h den Vektor
In 1h legt es also den Vektor
Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:
|
= |
|
|
|
|
= |
|
|: |
|
= |
|
nach 3 h sind also beide auf gleicher
Höhe:
Höhendifferenz der Flugbahnen
Beispiel:
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A
Es gibt einen Zeitpunkt, an dem die Drohne genau über der Seilbahn ist. Berechne den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.
Die Seilbahngondel legt in 1s den Vektor
Den scheinbaren Schnittpunkt der beiden Bewegungsbahnen, den man von direkt darüber oder direkt darunter sehen könnte, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.
langsame Rechnung einblenden
t =
eingesetzt in Zeile (I):
s =
Das heißt also, dass die Drohne nach 7s und die Seilbahngondel nach 3s an diesem 'x1-x2-Schnittpunkt' ist.
die Drohne ist also nach 7s bei
Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von
1.6 - 1 = 0.6 m
Zeit zu gegebener Höhe gesucht
Beispiel:
Ein Heißluftballon startet zum Zeitpunkt t=0 im Punkt A
Wann hat der Heißluftballon die Höhe von 300m erreicht?
Das Bewegungsobjekt legt in 3min den Vektor
In 1min legt es also den Vektor
Die Flugbahn/Bewegungsbahn kann als Gerade g mit g:
In 1min steigt (bzw. sinkt) das Bewegungsobjekt um 10m (Änderung in der x3-Koordinate).
Um von 30 auf 300m (also 270m) zu steigen (bzw. fallen),
muss es also
Geschwindigkeit in km/h
Beispiel:
Eine Rakete startet zum Zeitpunkt t=0 im Punkt A
Wie hoch ist die Geschwindigkeit der Rakete in km/h?
Das Bewegungsobjekt legt in 1s den Vektor
Die Geschwindigkeit ist also
v=450