Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 55%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 50% Wahrscheinlichkeit nicht mehr als 40 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
730.5312
740.4798
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.

Es muss gelten: P0.55n (X40) ≥ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer. Also müssten dann doch bei 40 0.55 ≈ 73 Versuchen auch ungefähr 40 (≈0.55⋅73) Treffer auftreten.

Wir berechnen also mit unserem ersten n=73:
P0.55n (X40) ≈ 0.5312 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=73 die gesuchte Wahrscheinlichkeit über 50% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 55%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 50% Wahrscheinlichkeit 36 oder mehr grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
640.5283
650.4735
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.

Es muss gelten: P0.55n (X36) ≥ 0.5

Weil man ja aber P0.55n (X36) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.55n (X36) = 1 - P0.55n (X35) ≥ 0.5 |+ P0.55n (X35) - 0.5

0.5 ≥ P0.55n (X35) oder P0.55n (X35) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer. Also müssten dann doch bei 36 0.55 ≈ 65 Versuchen auch ungefähr 36 (≈0.55⋅65) Treffer auftreten.

Wir berechnen also mit unserem ersten n=65:
P0.55n (X35) ≈ 0.4735 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=65 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 65 sein, damit P0.55n (X35) ≤ 0.5 oder eben P0.55n (X36) ≥ 0.5 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,06. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 70% kein Descepticon unter ihnen ist?

Lösung einblenden
nP(X≤k)
......
10.94
20.8836
30.8306
40.7807
50.7339
60.6899
......

Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.06 und variablem n.

Es muss gelten: P0.06n (X0) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 6% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.06 ≈ 0 Versuchen auch ungefähr 0 (≈0.06⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.06n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=5 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 28 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
4 9 0.9998
5 10 0.9981
6 11 0.9924
7 12 0.9791
8 13 0.9552
9 14 0.9198
10 15 0.8738
11 16 0.8194
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.

Es muss gelten: Pp28 (X21) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp28 (X21) ('höchstens 21 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 4 9 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 10 15 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 10 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 17% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 90 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
50.0011
60.0035
70.0094
80.0219
90.0453
100.084
110.1417
120.2195
130.3152
140.4229
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.17 und n = 90.

Es muss gelten: P0.1790 (Xk) < 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1790 (X11) nimmt mit 14.17% einen Wert über 0.1 an.

Das größtmögliche k mit P0.1790 (Xk) < 0.1 ist somit k = 10.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 10 sein.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 40 Fragen gestellt. Bei jeder Frage gibt es 7 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 8% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
40.3057
50.4833
60.6561
70.7959
80.892
90.949
100.9784
110.9918
120.9972
130.9991
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 7 und n = 40.

Es muss gelten: P 1 7 40 (Xk) < 0.08 (oranger Bereich)

oder andersrum ausgedrückt: P 1 7 40 (Xk-1) ≥ 0.92 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 7 40 (X9) nimmt mit 94.9% einen Wert über 0.92 an.

Das kleinstmögliche k mit P 1 7 40 (Xk) = 1 - P 1 7 40 (Xk-1) < 0.08 ist somit k = 10.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 10 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 16% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 85 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
50.0043
60.0119
70.0284
80.0589
90.1087
100.1807
110.2743
120.3842
130.5017
140.6169
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.16 und n = 85.

Es muss gelten: P0.1685 (Xk) < 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1685 (X11) nimmt mit 27.43% einen Wert über 0.2 an.

Das größtmögliche k mit P0.1685 (Xk) < 0.2 ist somit k = 10.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 10 sein.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)