Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (mind)

Beispiel:

In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 94% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 50% Wahrscheinlichkeit in mindestens 4 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?

Lösung einblenden
nP(X≤k)
......
600.5113
610.4982
620.4854
630.4726
640.4601
650.4477
660.4354
670.4234
......

Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.06 und variablem n.

Es muss gelten: P0.06n (X4) ≥ 0.5

Weil man ja aber P0.06n (X4) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.06n (X4) = 1 - P0.06n (X3) ≥ 0.5 |+ P0.06n (X3) - 0.5

0.5 ≥ P0.06n (X3) oder P0.06n (X3) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 6% der Versuche mit einem Treffer. Also müssten dann doch bei 4 0.06 ≈ 67 Versuchen auch ungefähr 4 (≈0.06⋅67) Treffer auftreten.

Wir berechnen also mit unserem ersten n=67:
P0.06n (X3) ≈ 0.4234 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=61 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 61 sein, damit P0.06n (X3) ≤ 0.5 oder eben P0.06n (X4) ≥ 0.5 gilt.

Binomialvert. mit variablem n (mind)

Beispiel:

Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens 3 Überraschung(en) zu erhalten.

Lösung einblenden
nP(X≤k)
......
240.3133
250.2862
260.261
270.2375
280.2158
290.1958
......

Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = 1 7 und variablem n.

Es muss gelten: P 1 7 n (X3) ≥ 0.8

Weil man ja aber P 1 7 n (X3) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 7 n (X3) = 1 - P 1 7 n (X2) ≥ 0.8 |+ P 1 7 n (X2) - 0.8

0.2 ≥ P 1 7 n (X2) oder P 1 7 n (X2) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 7 der Versuche mit einem Treffer. Also müssten dann doch bei 3 1 7 ≈ 21 Versuchen auch ungefähr 3 (≈ 1 7 ⋅21) Treffer auftreten.

Wir berechnen also mit unserem ersten n=21:
P 1 7 n (X2) ≈ 0.4058 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=29 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 29 sein, damit P 1 7 n (X2) ≤ 0.2 oder eben P 1 7 n (X3) ≥ 0.8 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 70% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
120.7847
130.769
140.7536
150.7386
160.7238
170.7093
180.6951
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=17 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 8 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 50 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 8 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 80% für die 50 Durchgänge reichen?

Lösung einblenden
pP(X≤8)
......
1 6 0.5421
1 7 0.7197
1 8 0.8339
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Es muss gelten: Pp50 (X8) =0.8 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp50 (X8) ('höchstens 8 Treffer bei 50 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 8 50 . Mit diesem p wäre ja 8= 8 50 ⋅50 der Erwartungswert und somit Pp50 (X8) irgendwo in der nähe von 50%. Wenn wir nun p= 8 50 mit 1 8 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 6 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 8 die gesuchte Wahrscheinlichkeit über 80% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 8 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,75. Das Zufallsexperiment soll 66 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 66 Versuchen höchstens k Treffer sind, weniger als 65% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
450.1289
460.195
470.2795
480.3799
490.4905
500.6033
510.7094
520.8013
530.8741
540.9267
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.75 und n = 66.

Es muss gelten: P0.7566 (Xk) < 0.65

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 50 immer noch weniger als 0.65 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.7566 (X51) nimmt mit 70.94% einen Wert über 0.65 an.

Das größtmögliche k mit P0.7566 (Xk) < 0.65 ist somit k = 50.

größtmöglicher Wert für k muss somit k = 50 sein.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 40 Fragen gestellt. Bei jeder Frage gibt es 5 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 2% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
80.5931
90.7318
100.8392
110.9125
120.9568
130.9806
140.9921
150.9971
160.999
170.9997
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 5 und n = 40.

Es muss gelten: P 1 5 40 (Xk) < 0.02 (oranger Bereich)

oder andersrum ausgedrückt: P 1 5 40 (Xk-1) ≥ 0.98 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 12 immer noch weniger als 0.98 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 5 40 (X13) nimmt mit 98.06% einen Wert über 0.98 an.

Das kleinstmögliche k mit P 1 5 40 (Xk) = 1 - P 1 5 40 (Xk-1) < 0.02 ist somit k = 14.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 14 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 14% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 80 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
10.0001
20.0006
30.0026
40.009
50.0248
60.057
70.1123
80.1946
90.3017
100.4255
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.14 und n = 80.

Es muss gelten: P0.1480 (Xk) < 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 6 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1480 (X7) nimmt mit 11.23% einen Wert über 0.1 an.

Das größtmögliche k mit P0.1480 (Xk) < 0.1 ist somit k = 6.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 6 sein.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)