Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 55%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 50% Wahrscheinlichkeit nicht mehr als 40 grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 73 | 0.5312 |
| 74 | 0.4798 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.
Es muss gelten: ≥ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 73 Versuchen auch ungefähr 40 (≈0.55⋅73) Treffer auftreten.
Wir berechnen also mit unserem ersten n=73:
≈ 0.5312
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=73 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 55%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 50% Wahrscheinlichkeit 36 oder mehr grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 64 | 0.5283 |
| 65 | 0.4735 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 65 Versuchen auch ungefähr 36 (≈0.55⋅65) Treffer auftreten.
Wir berechnen also mit unserem ersten n=65:
≈ 0.4735
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=65 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 65 sein, damit ≤ 0.5 oder eben ≥ 0.5 gilt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Ein Mathelehrer möchte neue Taschenrechner für seine Klasse bestellen. Die Wahrscheinlichkeit, dass einer der Taschenrechner ein Decepticon (bekannt aus dem Transformers-Filmen) ist, liegt bei p=0,06. Wie viele Rechner können bestellt werden, dass zu einer Wahrscheinlichkeit von 70% kein Descepticon unter ihnen ist?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 1 | 0.94 |
| 2 | 0.8836 |
| 3 | 0.8306 |
| 4 | 0.7807 |
| 5 | 0.7339 |
| 6 | 0.6899 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Descepticons unter den Taschenrechnern an und ist im Idealfall binomialverteilt mit p = 0.06 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 6% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.06⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=5 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 28 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 28 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9998 | |
| 0.9981 | |
| 0.9924 | |
| 0.9791 | |
| 0.9552 | |
| 0.9198 | |
| 0.8738 | |
| 0.8194 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=28 und unbekanntem Parameter p.
Es muss gelten: = 0.85 (oder mehr)
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit ('höchstens 21 Treffer bei 28 Versuchen') auswirkt (siehe Tabelle links)
Als Startwert wählen wir als p=. (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 10 sein.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 17% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 90 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 5 | 0.0011 |
| 6 | 0.0035 |
| 7 | 0.0094 |
| 8 | 0.0219 |
| 9 | 0.0453 |
| 10 | 0.084 |
| 11 | 0.1417 |
| 12 | 0.2195 |
| 13 | 0.3152 |
| 14 | 0.4229 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.17 und n = 90.
Es muss gelten: < 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 14.17% einen Wert über 0.1 an.
Das größtmögliche k mit < 0.1 ist somit k = 10.
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 10 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einem Multiple-Choice-Test werden 40 Fragen gestellt. Bei jeder Frage gibt es 7 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 8% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 4 | 0.3057 |
| 5 | 0.4833 |
| 6 | 0.6561 |
| 7 | 0.7959 |
| 8 | 0.892 |
| 9 | 0.949 |
| 10 | 0.9784 |
| 11 | 0.9918 |
| 12 | 0.9972 |
| 13 | 0.9991 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = und n = 40.
Es muss gelten: < 0.08 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.92 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 94.9% einen Wert über 0.92 an.
Das kleinstmögliche k mit = 1 - < 0.08 ist somit k = 10.
Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 10 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 16% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 85 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 5 | 0.0043 |
| 6 | 0.0119 |
| 7 | 0.0284 |
| 8 | 0.0589 |
| 9 | 0.1087 |
| 10 | 0.1807 |
| 11 | 0.2743 |
| 12 | 0.3842 |
| 13 | 0.5017 |
| 14 | 0.6169 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.16 und n = 85.
Es muss gelten: < 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 27.43% einen Wert über 0.2 an.
Das größtmögliche k mit < 0.2 ist somit k = 10.
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 10 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
