Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

Eine Fluggesellschaft geht davon aus, dass 15% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 29-Platzmaschine höchstens verkaufen, so dass es zu mindestens 70% Wahrscheinlichkeit zu keiner Überbelegung kommt.

Lösung einblenden
nP(X≤k)
......
330.7505
340.5924
......

Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.

Es muss gelten: P0.85n (X29) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei 29 0.85 ≈ 34 Versuchen auch ungefähr 29 (≈0.85⋅34) Treffer auftreten.

Wir berechnen also mit unserem ersten n=34:
P0.85n (X29) ≈ 0.5924 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=33 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 90% 34 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
2410.1231
2420.1175
2430.1122
2440.107
2450.1021
2460.0973
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X34) ≥ 0.9

Weil man ja aber P 1 6 n (X34) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X34) = 1 - P 1 6 n (X33) ≥ 0.9 |+ P 1 6 n (X33) - 0.9

0.1 ≥ P 1 6 n (X33) oder P 1 6 n (X33) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 34 1 6 ≈ 204 Versuchen auch ungefähr 34 (≈ 1 6 ⋅204) Treffer auftreten.

Wir berechnen also mit unserem ersten n=204:
P 1 6 n (X33) ≈ 0.4709 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=246 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 246 sein, damit P 1 6 n (X33) ≤ 0.1 oder eben P 1 6 n (X34) ≥ 0.9 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 20%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 90% Wahrscheinlichkeit nicht mehr als 37 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
1550.902
1560.8945
1570.8867
1580.8784
1590.8699
1600.8609
1610.8516
1620.8419
1630.8319
1640.8215
1650.8107
1660.7997
1670.7883
1680.7766
1690.7645
1700.7522
1710.7397
1720.7268
1730.7137
1740.7004
1750.6869
1760.6731
1770.6592
1780.6451
1790.6309
1800.6166
1810.6022
1820.5877
1830.5731
1840.5585
1850.5438
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.2 und variablem n.

Es muss gelten: P0.2n (X37) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 20% der Versuche mit einem Treffer. Also müssten dann doch bei 37 0.2 ≈ 185 Versuchen auch ungefähr 37 (≈0.2⋅185) Treffer auftreten.

Wir berechnen also mit unserem ersten n=185:
P0.2n (X37) ≈ 0.5438 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=155 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Schulklasse möchte fürs Schulfest ein Glücksrad entwickeln. Aus optischen Gründen sollen dabei alle Sektoren gleich groß sein. Einer davon soll für den Hauptpreis stehen. Hierfür haben sie insgesamt 7 Preise gesammelt. Sie erwarten, dass das Glücksrad beim Schulfest 95 mal gespielt wird. Mit wie vielen Sektoren müssen sie ihr Glückrad mindestens bestücken damit die 7 Hauptpreise mit einer Wahrscheinlichkeit von mindestens 70% für die 95 Durchgänge reichen?

Lösung einblenden
pP(X≤7)
......
1 13 0.5512
1 14 0.6319
1 15 0.7004
......

Die Zufallsgröße X gibt die Anzahl der Hauptpreise an. X ist binomialverteilt mit n=95 und unbekanntem Parameter p.

Es muss gelten: Pp95 (X7) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp95 (X7) ('höchstens 7 Treffer bei 95 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 7 95 . Mit diesem p wäre ja 7= 7 95 ⋅95 der Erwartungswert und somit Pp95 (X7) irgendwo in der nähe von 50%. Wenn wir nun p= 7 95 mit 1 7 erweitern (so dass wir auf den Zähler 1 kommen) und den Nenner abrunden, müssten wir mit p= 1 13 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 1 15 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl der Sektoren des Glücksrad, muss also mindestens 15 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 16% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 60 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 15% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
......
10.0004
20.0022
30.009
40.0273
50.0665
60.135
70.2355
80.3625
90.5021
100.6378
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.16 und n = 60.

Es muss gelten: P0.1660 (Xk) < 0.15

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 6 immer noch weniger als 0.15 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1660 (X7) nimmt mit 23.55% einen Wert über 0.15 an.

Das größtmögliche k mit P0.1660 (Xk) < 0.15 ist somit k = 6.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 6 sein.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 4 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
110.5457
120.6748
130.7841
140.8673
150.9247
160.9605
170.9809
180.9915
190.9965
200.9987
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 4 und n = 45.

Es muss gelten: P 1 4 45 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 4 45 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 15 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 4 45 (X16) nimmt mit 96.05% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 4 45 (Xk) = 1 - P 1 4 45 (Xk-1) < 0.06 ist somit k = 17.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 17 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 13% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 65 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0001
10.0013
20.0067
30.0238
40.0633
50.1354
60.2431
70.3788
80.5257
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 65.

Es muss gelten: P0.1365 (Xk) < 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1365 (X5) nimmt mit 13.54% einen Wert über 0.1 an.

Das größtmögliche k mit P0.1365 (Xk) < 0.1 ist somit k = 4.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)