Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,8. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 70% nicht über 27 Freiwurfpunkte kommen lassen will?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 32 | 0.7956 |
| 33 | 0.671 |
| 34 | 0.5339 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten: ≥ 0.7
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 34 Versuchen auch ungefähr 27 (≈0.8⋅34) Treffer auftreten.
Wir berechnen also mit unserem ersten n=34:
≈ 0.5339
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=32 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 80%. Wie oft muss mindestens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 90% Wahrscheinlichkeit 32 oder mehr grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 40 | 0.4069 |
| 41 | 0.296 |
| 42 | 0.205 |
| 43 | 0.1355 |
| 44 | 0.0858 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 40 Versuchen auch ungefähr 32 (≈0.8⋅40) Treffer auftreten.
Wir berechnen also mit unserem ersten n=40:
≈ 0.4069
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=44 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 44 sein, damit ≤ 0.1 oder eben ≥ 0.9 gilt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 80% kein Spitzel in dieser Projektgruppe ist?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 6 | 0.8858 |
| 7 | 0.8681 |
| 8 | 0.8508 |
| 9 | 0.8337 |
| 10 | 0.8171 |
| 11 | 0.8007 |
| 12 | 0.7847 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.
Wir berechnen also mit unserem ersten n=0:
≈ 1
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=11 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 7er-Packung mit der mindestens 75% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?
| p | P(X≥2)=1-P(X≤1) |
|---|---|
| ... | ... |
| 0.9375 | |
| 0.7366 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=7 und unbekanntem Parameter p.
Es muss gelten: = 1- = 0.75 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('mindestens 2 Treffer bei 7 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Als Startwert wählen wir als p=.
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens
2 sein.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 15% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 75 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 25% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 3 | 0.0024 |
| 4 | 0.0084 |
| 5 | 0.0234 |
| 6 | 0.0544 |
| 7 | 0.1082 |
| 8 | 0.1889 |
| 9 | 0.2949 |
| 10 | 0.4184 |
| 11 | 0.5472 |
| 12 | 0.6684 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 75.
Es muss gelten: < 0.25
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 8 immer noch weniger als 0.25 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 29.49% einen Wert über 0.25 an.
Das größtmögliche k mit < 0.25 ist somit k = 8.
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 8 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 8%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 10% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.2229 |
| 1 | 0.5719 |
| 2 | 0.8298 |
| 3 | 0.9494 |
| 4 | 0.9884 |
| 5 | 0.9979 |
| 6 | 0.9997 |
| 7 | 1 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.08 und n = 18.
Es muss gelten: < 0.1 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.9 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 94.94% einen Wert über 0.9 an.
Das kleinstmögliche k mit = 1 - < 0.1 ist somit k = 4.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,6. Das Zufallsexperiment soll 51 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 51 Versuchen höchstens k Treffer sind, weniger als 50% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 25 | 0.0735 |
| 26 | 0.1212 |
| 27 | 0.1873 |
| 28 | 0.2723 |
| 29 | 0.3735 |
| 30 | 0.4848 |
| 31 | 0.5979 |
| 32 | 0.7039 |
| 33 | 0.7954 |
| 34 | 0.8681 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.6 und n = 51.
Es muss gelten: < 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 30 immer noch weniger als 0.5 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 59.79% einen Wert über 0.5 an.
Das größtmögliche k mit < 0.5 ist somit k = 30.
größtmöglicher Wert für k muss somit k = 30 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
