Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (mind)

Beispiel:

Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 50% mindestens 3 Überraschung(en) zu erhalten.

Lösung einblenden
nP(X≤k)
......
180.5145
190.4767
200.4404
210.4058
......

Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = 1 7 und variablem n.

Es muss gelten: P 1 7 n (X3) ≥ 0.5

Weil man ja aber P 1 7 n (X3) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 7 n (X3) = 1 - P 1 7 n (X2) ≥ 0.5 |+ P 1 7 n (X2) - 0.5

0.5 ≥ P 1 7 n (X2) oder P 1 7 n (X2) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 7 der Versuche mit einem Treffer. Also müssten dann doch bei 3 1 7 ≈ 21 Versuchen auch ungefähr 3 (≈ 1 7 ⋅21) Treffer auftreten.

Wir berechnen also mit unserem ersten n=21:
P 1 7 n (X2) ≈ 0.4058 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=19 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 19 sein, damit P 1 7 n (X2) ≤ 0.5 oder eben P 1 7 n (X3) ≥ 0.5 gilt.

Binomialvert. mit variablem n (mind)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,55.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, mindestens 20 Treffer zu erzielen ?

Lösung einblenden
nP(X≤k)
......
350.5315
360.4578
......

Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.

Es muss gelten: P0.55n (X20) ≥ 0.5

Weil man ja aber P0.55n (X20) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.55n (X20) = 1 - P0.55n (X19) ≥ 0.5 |+ P0.55n (X19) - 0.5

0.5 ≥ P0.55n (X19) oder P0.55n (X19) ≤ 0.5

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer. Also müssten dann doch bei 20 0.55 ≈ 36 Versuchen auch ungefähr 20 (≈0.55⋅36) Treffer auftreten.

Wir berechnen also mit unserem ersten n=36:
P0.55n (X19) ≈ 0.4578 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=36 die gesuchte Wahrscheinlichkeit unter 0.5 ist.

n muss also mindestens 36 sein, damit P0.55n (X19) ≤ 0.5 oder eben P0.55n (X20) ≥ 0.5 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,8. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 80% nicht über 33 Freiwurfpunkte kommen lassen will?

Lösung einblenden
nP(X≤k)
......
390.82
400.7141
410.5931
......

Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.

Es muss gelten: P0.8n (X33) ≥ 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.8 ≈ 41 Versuchen auch ungefähr 33 (≈0.8⋅41) Treffer auftreten.

Wir berechnen also mit unserem ersten n=41:
P0.8n (X33) ≈ 0.5931 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=39 die gesuchte Wahrscheinlichkeit über 80% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 11 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 11 gezogenen Kugeln nicht mehr als 6 rote sind?

Lösung einblenden
pP(X≤6)
......
4 7 0.5456
4 8 0.7256
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=11 und unbekanntem Parameter p.

Es muss gelten: Pp11 (X6) =0.7 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp11 (X6) ('höchstens 6 Treffer bei 11 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Um einen günstigen Startwert zu finden wählen wir mal als p= 6 11 . Mit diesem p wäre ja 6= 6 11 ⋅11 der Erwartungswert und somit Pp11 (X6) irgendwo in der nähe von 50%. Wenn wir nun p= 6 11 mit 4 6 erweitern (so dass wir auf den Zähler 4 kommen) und den Nenner abrunden, müssten wir mit p= 4 7 einen brauchbaren Einstiegswert für dieses Probieren erhalten.

In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= 4 8 die gesuchte Wahrscheinlichkeit über 70% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens 8 sein.

Also werden noch 4 zusätzliche Optionen (also schwarze Kugeln) benötigt.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,4. Das Zufallsexperiment soll 94 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 94 Versuchen höchstens k Treffer sind, weniger als 80% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
360.4111
370.4944
380.5777
390.6575
400.7306
410.7948
420.8488
430.8923
440.926
450.9509
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.4 und n = 94.

Es muss gelten: P0.494 (Xk) < 0.8

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 41 immer noch weniger als 0.8 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.494 (X42) nimmt mit 84.88% einen Wert über 0.8 an.

Das größtmögliche k mit P0.494 (Xk) < 0.8 ist somit k = 41.

größtmöglicher Wert für k muss somit k = 41 sein.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 6%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 14% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.3716
10.7511
20.9327
30.9868
40.9981
50.9998
61
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.06 und n = 16.

Es muss gelten: P0.0616 (Xk) < 0.14 (oranger Bereich)

oder andersrum ausgedrückt: P0.0616 (Xk-1) ≥ 0.86 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 1 immer noch weniger als 0.86 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.0616 (X2) nimmt mit 93.27% einen Wert über 0.86 an.

Das kleinstmögliche k mit P0.0616 (Xk) = 1 - P0.0616 (Xk-1) < 0.14 ist somit k = 3.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.

0
1
2
3
4
5
6
7
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 13% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 55 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0005
10.0043
20.02
30.0613
40.1414
50.2637
60.4158
70.575
80.7177
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 55.

Es muss gelten: P0.1355 (Xk) < 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1355 (X5) nimmt mit 26.37% einen Wert über 0.2 an.

Das größtmögliche k mit P0.1355 (Xk) < 0.2 ist somit k = 4.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)