Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 50% mindestens 3 Überraschung(en) zu erhalten.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 18 | 0.5145 |
| 19 | 0.4767 |
| 20 | 0.4404 |
| 21 | 0.4058 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 21 Versuchen auch ungefähr 3
(≈
Wir berechnen also mit unserem ersten n=21:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=19 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 19 sein, damit
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,55.Wie oft muss man das Zufallsexperiment mindestens wiederholen (oder wie groß muss die Stichprobe sein), um mit mind. 50% Wahrscheinlichkeit, mindestens 20 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 35 | 0.5315 |
| 36 | 0.4578 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.55 und variablem n.
Es muss gelten:
Weil man ja aber
0.5 ≥
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 55% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=36:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=36 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 36 sein, damit
Binomialvert. mit variablem n (höchst.)
Beispiel:
Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,8. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 80% nicht über 33 Freiwurfpunkte kommen lassen will?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 39 | 0.82 |
| 40 | 0.7141 |
| 41 | 0.5931 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=41:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=39 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 11 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 11 gezogenen Kugeln nicht mehr als 6 rote sind?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.5456 | |
| 0.7256 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=11 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
8 sein.
Also werden noch 4 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,4. Das Zufallsexperiment soll 94 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 94 Versuchen höchstens k Treffer sind, weniger als 80% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 36 | 0.4111 |
| 37 | 0.4944 |
| 38 | 0.5777 |
| 39 | 0.6575 |
| 40 | 0.7306 |
| 41 | 0.7948 |
| 42 | 0.8488 |
| 43 | 0.8923 |
| 44 | 0.926 |
| 45 | 0.9509 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.4 und n = 94.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
41 immer noch weniger als 0.8 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 41 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 6%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 14% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.3716 |
| 1 | 0.7511 |
| 2 | 0.9327 |
| 3 | 0.9868 |
| 4 | 0.9981 |
| 5 | 0.9998 |
| 6 | 1 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.06 und n = 16.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
1 immer noch weniger als 0.86 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 3 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 13% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 55 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 20% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| 0 | 0.0005 |
| 1 | 0.0043 |
| 2 | 0.02 |
| 3 | 0.0613 |
| 4 | 0.1414 |
| 5 | 0.2637 |
| 6 | 0.4158 |
| 7 | 0.575 |
| 8 | 0.7177 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.13 und n = 55.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
4 immer noch weniger als 0.2 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
