Aufgabenbeispiele von Rückwärtsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Binomialvert. mit variablem n (höchst.)

Beispiel:

In einer Urne ist der Anteil der grünen Kugeln 25%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 60% Wahrscheinlichkeit nicht mehr als 35 grüne Kugeln gezogen werden?

Lösung einblenden
nP(X≤k)
......
1370.6033
1380.584
1390.5647
1400.5453
......

Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.25 und variablem n.

Es muss gelten: P0.25n (X35) ≥ 0.6

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 25% der Versuche mit einem Treffer. Also müssten dann doch bei 35 0.25 ≈ 140 Versuchen auch ungefähr 35 (≈0.25⋅140) Treffer auftreten.

Wir berechnen also mit unserem ersten n=140:
P0.25n (X35) ≈ 0.5453 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=137 die gesuchte Wahrscheinlichkeit über 60% ist.

Binomialvert. mit variablem n (mind)

Beispiel:

In Tschechien gilt absolutes Alkoholverbot in Lokalen für Jugendliche unter 18 Jahren. Ein paar trinkfreudige 17-jährige Jugendliche wollen bei einer Studienfahrt nach Prag trotzdem ihr Glück versuchen. 95% der Gaststätten setzen das Alkoholverbot konsequent um und schenken nur gegen Vorlage einer "ID" (Personalausweis) Bier aus. Wie viele Kneipen müssen die Jugenlichen nun mindestens aufsuchen, damit sie bei einer Kneipentour mit mindestens 60% Wahrscheinlichkeit in mindestens 5 Lokalen nicht mit Nachfragen zu ihrer "ID" gedemütigt werden und in Ruhe ein Bier trinken können?

Lösung einblenden
nP(X≤k)
......
1000.436
1010.4271
1020.4183
1030.4096
1040.4009
1050.3924
......

Die Zufallsgröße X gibt die Anzahl der besuchten Kneipen, die keine "ID" (Personalausweis) verlangen an und ist im Idealfall binomialverteilt mit p = 0.05 und variablem n.

Es muss gelten: P0.05n (X5) ≥ 0.6

Weil man ja aber P0.05n (X5) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.05n (X5) = 1 - P0.05n (X4) ≥ 0.6 |+ P0.05n (X4) - 0.6

0.4 ≥ P0.05n (X4) oder P0.05n (X4) ≤ 0.4

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 5% der Versuche mit einem Treffer. Also müssten dann doch bei 5 0.05 ≈ 100 Versuchen auch ungefähr 5 (≈0.05⋅100) Treffer auftreten.

Wir berechnen also mit unserem ersten n=100:
P0.05n (X4) ≈ 0.436 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.4 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.4 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=105 die gesuchte Wahrscheinlichkeit unter 0.4 ist.

n muss also mindestens 105 sein, damit P0.05n (X4) ≤ 0.4 oder eben P0.05n (X5) ≥ 0.6 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Beim MI6 (Arbeitsplatz von James Bond 007) soll eine Projektgruppe zur Aushebung einer multinationalen Superschurkenvereinigung eingerichtet werden. Bisherige Studien haben ergeben, dass diese kriminelle Vereinigung bereits alle wichtigen Regierungsbehörden infiltriert hat. Man geht davon aus, dass bereits jeder 50. MI6-Angestellte ein Spitzel dieser Organisiation ist. Wie groß darf diese Gruppe nun sein, so dass mit einer Wahrscheinlichkeit von mindestens 90% kein Spitzel in dieser Projektgruppe ist?

Lösung einblenden
nP(X≤k)
......
10.98
20.9604
30.9412
40.9224
50.9039
60.8858
......

Die Zufallsgröße X gibt Anzahl der Spitzel unter den MI6-Angestellten an und ist im Idealfall binomialverteilt mit p = 0.02 und variablem n.

Es muss gelten: P0.02n (X0) ≥ 0.9

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 2% der Versuche mit einem Treffer. Also müssten dann doch bei 0 0.02 ≈ 0 Versuchen auch ungefähr 0 (≈0.02⋅0) Treffer auftreten.

Wir berechnen also mit unserem ersten n=0:
P0.02n (X0) ≈ 1 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.9 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.9 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=5 die gesuchte Wahrscheinlichkeit über 90% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 26 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 26 gezogenen Kugeln nicht mehr als 21 schwarze sind?

Lösung einblenden
pP(X≤21)
......
2 4 0.9997
3 5 0.9934
4 6 0.9642
5 7 0.9028
6 8 0.8156
......

Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=26 und unbekanntem Parameter p.

Es muss gelten: Pp26 (X21) = 0.85 (oder mehr)

Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 2 größer sein muss als der Zähler.

Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus, wie sich das auf die gesuchte Wahrscheinlichkeit Pp26 (X21) ('höchstens 21 Treffer bei 26 Versuchen') auswirkt (siehe Tabelle links)

Als Startwert wählen wir als p= 2 4 . (Durch Ausprobieren erkennt man, dass vorher die Wahrscheinlichkeit immer fast 1 ist)

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 5 7 die gesuchte Wahrscheinlichkeit über 85% bleibt.
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 5 sein.

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 25 Fragen gestellt. Bei jeder Frage gibt es 7 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 6% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
10.1095
20.2862
30.5119
40.7189
50.8637
60.9442
70.9806
80.9942
90.9985
100.9997
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 7 und n = 25.

Es muss gelten: P 1 7 25 (Xk) < 0.06 (oranger Bereich)

oder andersrum ausgedrückt: P 1 7 25 (Xk-1) ≥ 0.94 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 5 immer noch weniger als 0.94 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 7 25 (X6) nimmt mit 94.42% einen Wert über 0.94 an.

Das kleinstmögliche k mit P 1 7 25 (Xk) = 1 - P 1 7 25 (Xk-1) < 0.06 ist somit k = 7.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 7 sein.

0
1
2
3
4
5
6
7
8
9
10
11
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einem Multiple-Choice-Test werden 45 Fragen gestellt. Bei jeder Frage gibt es 6 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 10% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?

Lösung einblenden
kP(X≤k)
......
60.3592
70.518
80.6689
90.793
100.8823
110.9391
120.9714
130.9877
140.9952
150.9983
......

Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p = 1 6 und n = 45.

Es muss gelten: P 1 6 45 (Xk) < 0.1 (oranger Bereich)

oder andersrum ausgedrückt: P 1 6 45 (Xk-1) ≥ 0.9 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 10 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P 1 6 45 (X11) nimmt mit 93.91% einen Wert über 0.9 an.

Das kleinstmögliche k mit P 1 6 45 (Xk) = 1 - P 1 6 45 (Xk-1) < 0.1 ist somit k = 12.

Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 12 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,65. Das Zufallsexperiment soll 57 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 57 Versuchen höchstens k Treffer sind, weniger als 55% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
320.1044
330.162
340.2374
350.3295
360.434
370.5442
380.6519
390.7493
400.8307
410.8934
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.65 und n = 57.

Es muss gelten: P0.6557 (Xk) < 0.55

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 37 immer noch weniger als 0.55 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.6557 (X38) nimmt mit 65.19% einen Wert über 0.55 an.

Das größtmögliche k mit P0.6557 (Xk) < 0.55 ist somit k = 37.

größtmöglicher Wert für k muss somit k = 37 sein.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)