Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% 21 oder mehr 6er zu erzielen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 141 | 0.2533 |
| 142 | 0.2418 |
| 143 | 0.2306 |
| 144 | 0.2198 |
| 145 | 0.2093 |
| 146 | 0.1992 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.8
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.8 |+ - 0.8
0.2 ≥ oder ≤ 0.2
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 126 Versuchen auch ungefähr 21
(≈
Wir berechnen also mit unserem ersten n=126:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=146 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 146 sein, damit
Binomialvert. mit variablem n (mind)
Beispiel:
Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 80% 23 oder mehr 6er zu erzielen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 154 | 0.2509 |
| 155 | 0.2399 |
| 156 | 0.2292 |
| 157 | 0.2189 |
| 158 | 0.2088 |
| 159 | 0.1991 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p =
Es muss gelten:
Weil man ja aber
0.2 ≥
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden
Wir berechnen also mit unserem ersten n=138:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=159 die gesuchte Wahrscheinlichkeit unter 0.2 ist.
n muss also mindestens 159 sein, damit
Binomialvert. mit variablem n (höchst.)
Beispiel:
Eine Fluggesellschaft geht davon aus, dass 12% der gekauften Tickets gar nicht eingelöst werden. Wieviel Tickets kann sie für ihre 22-Platzmaschine höchstens verkaufen, so dass es zu mindestens 70% Wahrscheinlichkeit zu keiner Überbelegung kommt.
| n | P(X≤k) |
|---|---|
| ... | ... |
| 24 | 0.8013 |
| 25 | 0.5912 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Ticketbesitzer, die tatsächlich fliegen an und ist im Idealfall binomialverteilt mit p = 0.88 und variablem n.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 88% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=25:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=24 die gesuchte Wahrscheinlichkeit über 70% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 5 rote und einige schwarze Kugeln. Es soll 27 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln dürfen in der Urne höchstens sein, damit mit einer Wahrscheinlichkeit von mindestens 80% unter den 27 gezogenen Kugeln nicht mehr als 21 schwarze sind?
| p | P(X≤21) |
|---|---|
| ... | ... |
| 0.9992 | |
| 0.9967 | |
| 0.99 | |
| 0.9772 | |
| 0.9567 | |
| 0.9281 | |
| 0.8919 | |
| 0.8495 | |
| 0.8024 | |
| 0.7524 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe schwarz an. X ist binomialverteilt mit n=27 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Nenner bei unserer Einzelwahrscheinlichkeit p immer um 5 größer sein muss als der Zähler.
Deswegen erhöhen wir nun schrittweise immer den Zähler und Nenner bei der Einzelwahrscheinlichkeit um 1 und probieren aus,
wie sich das auf die gesuchte Wahrscheinlichkeit
Als Startwert wählen wir als p=
In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p=
Die Anzahl der schwarzen Kugeln, die hinzugefügt wird, darf also höchstens 13 sein.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 12% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 70 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| 0 | 0.0001 |
| 1 | 0.0014 |
| 2 | 0.0072 |
| 3 | 0.0252 |
| 4 | 0.0664 |
| 5 | 0.1406 |
| 6 | 0.2502 |
| 7 | 0.3867 |
| 8 | 0.5334 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.12 und n = 70.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
4 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einem Multiple-Choice-Test werden 35 Fragen gestellt. Bei jeder Frage gibt es 5 Antworten, von denen genau eine richtig ist. Die Wahrscheinlichkeit, dass man mit reinem Raten der richtigen Antworten durch Zufall trotzdem den Test besteht, soll unter 4% liegen. Wie viele Fragen müssen dann zum Bestehen des Tests mindestens richtig beantwortet werden?
| k | P(X≤k) |
|---|---|
| ... | ... |
| 6 | 0.4328 |
| 7 | 0.5993 |
| 8 | 0.745 |
| 9 | 0.8543 |
| 10 | 0.9253 |
| 11 | 0.9656 |
| 12 | 0.9858 |
| 13 | 0.9947 |
| 14 | 0.9982 |
| 15 | 0.9995 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der richtig geratenen Fragen an und ist im Idealfall binomialverteilt mit p =
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
10 immer noch weniger als 0.96 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl richtiger Fragen zum Bestehen des Tests muss somit k = 12 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,7. Das Zufallsexperiment soll 72 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 72 Versuchen höchstens k Treffer sind, weniger als 75% betragen. Bestimme den größtmöglichen Wert für k.
| k | P(X≤k) |
|---|---|
| ... | ... |
| 47 | 0.2257 |
| 48 | 0.3081 |
| 49 | 0.4023 |
| 50 | 0.5034 |
| 51 | 0.6051 |
| 52 | 0.701 |
| 53 | 0.7854 |
| 54 | 0.8547 |
| 55 | 0.9077 |
| 56 | 0.9452 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.7 und n = 72.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
52 immer noch weniger als 0.75 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 52 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
