Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,6.Wie oft darf man das Zufallsexperiment höchstens wiederholen (oder wie groß darf die Stichprobe sein), um mit mind. 60% Wahrscheinlichkeit, höchstens 34 Treffer zu erzielen ?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 55 | 0.6571 |
| 56 | 0.5935 |
| 57 | 0.5287 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.6 und variablem n.
Es muss gelten: ≥ 0.6
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 60% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 57 Versuchen auch ungefähr 34 (≈0.6⋅57) Treffer auftreten.
Wir berechnen also mit unserem ersten n=57:
≈ 0.5287
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.6 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.6 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=55 die gesuchte Wahrscheinlichkeit über 60% ist.
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,85. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 50% 27 mal oder öfters in den grünen Bereich zu kommen?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 31 | 0.506 |
| 32 | 0.3456 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.85 und variablem n.
Es muss gelten: ≥ 0.5
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.5 |+ - 0.5
0.5 ≥ oder ≤ 0.5
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 85% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 32 Versuchen auch ungefähr 27 (≈0.85⋅32) Treffer auftreten.
Wir berechnen also mit unserem ersten n=32:
≈ 0.3456
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=32 die gesuchte Wahrscheinlichkeit unter 0.5 ist.
n muss also mindestens 32 sein, damit ≤ 0.5 oder eben ≥ 0.5 gilt.
Binomialvert. mit variablem n (höchst.)
Beispiel:
In einer Urne ist der Anteil der grünen Kugeln 15%. Wie oft darf höchstens gezogen werden ( - natürlich mit Zurücklegen - ), so dass mit mind. 80% Wahrscheinlichkeit nicht mehr als 36 grüne Kugeln gezogen werden?
| n | P(X≤k) |
|---|---|
| ... | ... |
| 214 | 0.8021 |
| 215 | 0.7938 |
| 216 | 0.7853 |
| 217 | 0.7766 |
| 218 | 0.7677 |
| 219 | 0.7587 |
| 220 | 0.7496 |
| 221 | 0.7403 |
| 222 | 0.7308 |
| 223 | 0.7213 |
| 224 | 0.7116 |
| 225 | 0.7017 |
| 226 | 0.6918 |
| 227 | 0.6817 |
| 228 | 0.6715 |
| 229 | 0.6613 |
| 230 | 0.6509 |
| 231 | 0.6405 |
| 232 | 0.63 |
| 233 | 0.6194 |
| 234 | 0.6088 |
| 235 | 0.5981 |
| 236 | 0.5874 |
| 237 | 0.5767 |
| 238 | 0.5659 |
| 239 | 0.5551 |
| 240 | 0.5443 |
| ... | ... |
Die Zufallsgröße X gibt Anzahl der gezogenen grünen Kugeln an und ist im Idealfall binomialverteilt mit p = 0.15 und variablem n.
Es muss gelten: ≥ 0.8
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 15% der Versuche mit einem Treffer. Also müssten dann doch bei ≈ 240 Versuchen auch ungefähr 36 (≈0.15⋅240) Treffer auftreten.
Wir berechnen also mit unserem ersten n=240:
≈ 0.5443
(TI-Befehl: Binomialcdf ...)
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.8 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.8 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=214 die gesuchte Wahrscheinlichkeit über 80% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 2 rote und einige schwarze Kugeln. Es soll 15 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 85% unter den 15 gezogenen Kugeln nicht mehr als 6 rote sind?
| p | P(X≤6) |
|---|---|
| ... | ... |
| 0.6098 | |
| 0.797 | |
| 0.8942 | |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=15 und unbekanntem Parameter p.
Es muss gelten: =0.85 (oder mehr)
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 2 sein muss, da es ja genau 2 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit ('höchstens 6 Treffer bei 15 Versuchen') bei diesen Nennern wird (siehe Tabelle links)
Um einen günstigen Startwert zu finden wählen wir mal als p=. Mit diesem p wäre ja 6=⋅15 der Erwartungswert und somit irgendwo in der nähe von 50%. Wenn wir nun p= mit erweitern (so dass wir auf den Zähler 2 kommen) und den Nenner abrunden, müssten wir mit p= einen brauchbaren Einstiegswert für dieses Probieren erhalten.
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p= die gesuchte
Wahrscheinlichkeit über 85% steigt.
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
7 sein.
Also werden noch 5 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 8%. Für einen bestimmten Betrag darf man 16 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 10% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.2634 |
| 1 | 0.6299 |
| 2 | 0.8689 |
| 3 | 0.9658 |
| 4 | 0.9932 |
| 5 | 0.999 |
| 6 | 0.9999 |
| 7 | 1 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.08 und n = 16.
Es muss gelten: < 0.1 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.9 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.9 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 96.58% einen Wert über 0.9 an.
Das kleinstmögliche k mit = 1 - < 0.1 ist somit k = 4.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 12%. Für einen bestimmten Betrag darf man 18 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 13% ausgegeben werden muss?
| k | P(X≤k) |
|---|---|
| 0 | 0.1002 |
| 1 | 0.346 |
| 2 | 0.631 |
| 3 | 0.8382 |
| 4 | 0.9442 |
| 5 | 0.9846 |
| 6 | 0.9966 |
| 7 | 0.9994 |
| 8 | 0.9999 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.12 und n = 18.
Es muss gelten: < 0.13 (oranger Bereich)
oder andersrum ausgedrückt: ≥ 0.87 (blauer Bereich)
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 3 immer noch weniger als 0.87 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 94.42% einen Wert über 0.87 an.
Das kleinstmögliche k mit = 1 - < 0.13 ist somit k = 5.
Die Mindestanzahl der getroffenenen Bälle muss somit k = 5 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 12% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 60 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 15% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?
| k | P(X≤k) |
|---|---|
| 0 | 0.0005 |
| 1 | 0.0043 |
| 2 | 0.0196 |
| 3 | 0.0601 |
| 4 | 0.1388 |
| 5 | 0.259 |
| 6 | 0.4092 |
| 7 | 0.5672 |
| 8 | 0.7099 |
| ... | ... |
Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.12 und n = 60.
Es muss gelten: < 0.15
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.15 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst nimmt mit 25.9% einen Wert über 0.15 an.
Das größtmögliche k mit < 0.15 ist somit k = 4.
Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
