Aufgabenbeispiele von Rückwärtsaufgaben
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Binomialvert. mit variablem n (mind)
Beispiel:
Ein Lebensmittelhersteller wirbt damit, dass sich in jeder 7. Verpackung eine Überraschung befindet. Wie viele Packungen muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 90% mindestens 1 Überraschung(en) zu erhalten.
n | P(X≤k) |
---|---|
... | ... |
10 | 0.2141 |
11 | 0.1835 |
12 | 0.1573 |
13 | 0.1348 |
14 | 0.1155 |
15 | 0.099 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der Überraschungen an und ist im Idealfall binomialverteilt mit p = und variablem n.
Es muss gelten: ≥ 0.9
Weil man ja aber nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:
= 1 - ≥ 0.9 |+ - 0.9
0.1 ≥ oder ≤ 0.1
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden der Versuche mit einem Treffer.
Also müssten dann doch bei ≈ 7 Versuchen auch ungefähr 1
(≈
Wir berechnen also mit unserem ersten n=7:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=15 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 15 sein, damit
Binomialvert. mit variablem n (mind)
Beispiel:
Bei einem Glücksrad, ist die Wahrscheinlichkeit in den grünen Bereich zu kommen p=0,3. Wie oft muss man dieses Glückrad mindestens drehen, um mit einer Wahrscheinlichkeit von mindestens 90% 28 mal oder öfters in den grünen Bereich zu kommen?
n | P(X≤k) |
---|---|
... | ... |
108 | 0.1515 |
109 | 0.1379 |
110 | 0.1252 |
111 | 0.1134 |
112 | 0.1026 |
113 | 0.0925 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Drehungen, die im grünen Bereich landen an und ist im Idealfall binomialverteilt mit p = 0.3 und variablem n.
Es muss gelten:
Weil man ja aber
0.1 ≥
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 30% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=93:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=113 die gesuchte Wahrscheinlichkeit unter 0.1 ist.
n muss also mindestens 113 sein, damit
Binomialvert. mit variablem n (höchst.)
Beispiel:
Der Starspieler der gegnerischen Basketballmannschaft hat bei Freiwürfen eine Trefferquote von p=0,8. Wie viele Freiwürfe darf man bei ihm durch Fouls höchstens zulassen, wenn man ihn mit einer Wahrscheinlichkeit von mindestens 50% nicht über 26 Freiwurfpunkte kommen lassen will?
n | P(X≤k) |
---|---|
... | ... |
32 | 0.6398 |
33 | 0.4996 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenen Freiwürfe an und ist im Idealfall binomialverteilt mit p = 0.8 und variablem n.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 80% der Versuche mit einem Treffer.
Also müssten dann doch bei
Wir berechnen also mit unserem ersten n=33:
Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.5 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.
Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.5 überschritten wird.
Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=32 die gesuchte Wahrscheinlichkeit über 50% ist.
Binomialvert. mit variablem p (diskret) für WTR
Beispiel:
In einer Urne sind 4 rote und einige schwarze Kugeln. Es soll 16 mal mit Zurücklegen gezogen werden. Wie viele schwarze Kugeln müssen in der Urne mindestens sein, damit mit einer Wahrscheinlichkeit von mindestens 70% unter den 16 gezogenen Kugeln nicht mehr als 3 rote sind?
p | P(X≤3) |
---|---|
... | ... |
0.6362 | |
0.6705 | |
0.7014 | |
... | ... |
Die Zufallsgröße X gibt die Anzahl der gezogenen Kugeln mit der Farbe rot an. X ist binomialverteilt mit n=16 und unbekanntem Parameter p.
Es muss gelten:
Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 4 sein muss, da es ja genau 4 günstige Fälle gibt.
Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit
Um einen günstigen Startwert zu finden wählen wir mal als p=
In dieser Tabelle erkennen wir, dass erstmals bei der Einzelwahrscheinlichkeit p=
Der Nenner, also die Anzahl aller Kugeln, muss also mindestens
23 sein.
Also werden noch 19 zusätzliche Optionen (also schwarze Kugeln) benötigt.
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,9. Das Zufallsexperiment soll 96 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 96 Versuchen höchstens k Treffer sind, weniger als 70% betragen. Bestimme den größtmöglichen Wert für k.
k | P(X≤k) |
---|---|
... | ... |
82 | 0.0967 |
83 | 0.1609 |
84 | 0.2505 |
85 | 0.3642 |
86 | 0.4952 |
87 | 0.6307 |
88 | 0.7554 |
89 | 0.8563 |
90 | 0.9269 |
91 | 0.9688 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.9 und n = 96.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
87 immer noch weniger als 0.7 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 87 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (mind.)
Beispiel:
Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 15%. Für einen bestimmten Betrag darf man 12 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 8% ausgegeben werden muss?
k | P(X≤k) |
---|---|
0 | 0.1422 |
1 | 0.4435 |
2 | 0.7358 |
3 | 0.9078 |
4 | 0.9761 |
5 | 0.9954 |
6 | 0.9993 |
7 | 0.9999 |
8 | 1 |
... | ... |
Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.15 und n = 12.
Es muss gelten:
oder andersrum ausgedrückt:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
3 immer noch weniger als 0.92 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das kleinstmögliche k mit
Die Mindestanzahl der getroffenenen Bälle muss somit k = 5 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)
Binomialvert. mit variablem k (höchst.)
Beispiel:
Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,8. Das Zufallsexperiment soll 89 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 89 Versuchen höchstens k Treffer sind, weniger als 80% betragen. Bestimme den größtmöglichen Wert für k.
k | P(X≤k) |
---|---|
... | ... |
68 | 0.2332 |
69 | 0.3187 |
70 | 0.4164 |
71 | 0.5211 |
72 | 0.6257 |
73 | 0.7231 |
74 | 0.8074 |
75 | 0.8749 |
76 | 0.9245 |
77 | 0.9581 |
... | ... |
Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.8 und n = 89.
Es muss gelten:
Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:
Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).
Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und
73 immer noch weniger als 0.8 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst
Das größtmögliche k mit
größtmöglicher Wert für k muss somit k = 73 sein.
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)