Aufgabenbeispiele von MGK Klasse 8

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Dezimal aus Binär

Beispiel:

Gib die Zahl (1.0010.1100)2 im Dezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1.0010.1100)2 = 0⋅1 + 0⋅2 + 1⋅4 + 1⋅8 + 0⋅16 + 1⋅32 + 0⋅64 + 0⋅128 + 1⋅256= 300

Somit ergibt sich die Dezimaldarstellung von (1.0010.1100)2 = 300

Binär aus Dezimal

Beispiel:

Gib die Zahl 90 im Binärsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 90 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

90 = 64 + 26
= 64 + 16 + 10
= 64 + 16 + 8 + 2

= 1⋅64 + 0⋅32 + 1⋅16 + 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 90 = (101.1010)2

Binäres Addieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

               ( 1101.0100)2
             + ( 1010.0000)2

Lösung einblenden

Wir schreiben die beiden Binärzahlen untereinander und gehen wie beim schriftlichen Addieren von Dezimalzahlen vor:

               ( 1101.0100)2
             + ( 1010.0000)2
               1         
              (1 0111 0100)2

negative Binärzahlen

Beispiel:

Gegeben ist die 8-Bit-Binärzahl (0101.0111)2 = 87.

Bestimme -87 als 8-Bit-Binärzahl (in der Zweierkomplement-Darstellung):

Lösung einblenden

Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).

so wird (0101.0111)2
zu (1010.1000)2

Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:

               ( 1010.1000)2
             + ( 0000.0001)2
                         
               ( 1010 1001)2

Binäres Subtrahieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

               ( 0111.1011)2
             - ( 0110.1001)2

Lösung einblenden

Wir wandeln erst den Subtrahend b, also die untere Zahl, die angezogen wird, in ihre negative Zahl um, so dass wir dann einfach die beiden Zahlen addieren können (a-b = a+(-b).

Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).

so wird (0110.1001)2
zu (1001.0110)2

Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:

               ( 1001.0110)2
             + ( 0000.0001)2
                         
               ( 1001 0111)2

Jetzt können wir einfach a=(0111.1011)2 und -b = (1001.0111)2 addieren:

               ( 0111.1011)2
             + ( 1001.0111)2
               1 1111 111
              (1 0001 0010)2

Da wir ja aber nur 8-Bit Speicherplatz haben "verpufft der Overflow" und als Ergebnis stehen nur die 8 rechten Bit:

(0001.0010)2

Binäres Multiplizieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

(100.1011)2 ⋅ (11.1000)2 =

Lösung einblenden

Der zweite Faktor (11.1000)2 lässt sich als Summe von reinen 2-er-Potenzen schreiben:

                    ( 1000)2
                   (1.0000)2
               +  (10.0000)2
                  (11 1000)2

somit gilt:

(100.1011)2 ⋅ (11.1000)2 = 100.1011 ⋅ (10.0000 + 1.0000 + 1000)

Das Multiplizieren mit einer 2-er-Potenz bedeutet aber ja, dass man einfach die entsprechende Anzahl an Nullen hintenanhängt, somit gilt:

(100.1011)2 ⋅ (11.1000)2 = (1001.0110.0000)2 + (100.1011.0000)2 + (10.0101.1000)2

Diese 3 Summanden können wir nun schrittweise addieren:

             (10.0101.1000)2
         +  (100.1011.0000)2
               1 111     
            (111 0000 1000)2

Zu diesem Ergebnis dann die nächste Zahl dazu:

            (111.0000.1000)2
        + ( 1001.0110.0000)2
          1 111          
         (1 0000 0110 1000)2

Das Ergebnis ist somit: (1.0000.0110.1000)2

(Zum Vergleich in Dezimalzahlen: 75 ⋅ 56 = 4200)

Binäres Dividieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

(1111.0000)2 : (1010)2 =

Lösung einblenden
11110000 : 1010 = 11000     
- 1010                        
01010                       
- 1010                       
00000                      
- 0000                      
00000                     
- 0000                     
00000                    
- 0000                    
0000                    
  • Die obige Differenz (1111)2 - (1010)2 = (101)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 15 - 10 = 5
  • Die obige Differenz (01010)2 - (1010)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 10 - 10 = 0

(Zum Vergleich in Dezimalzahlen: 240 : 10 = 24)

Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 270 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 270 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

270 = 256 + 14
= 256 + 8 + 6
= 256 + 8 + 4 + 2

= 1⋅256 + 0⋅128 + 0⋅64 + 0⋅32 + 0⋅16 + 1⋅8 + 1⋅4 + 1⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 270 = (1.0000.1110)2

Um die Zahl 270 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 270 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1)2 = 1⋅1 = 1 = (1)16

(0000)2 = 0⋅8 + 0⋅4 + 0⋅2 + 0⋅1 = 0 = (0)16

(1110)2 = 1⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = 14 = (E)16

Somit ergibt sich die Hexadezimaldarstellung von (1.0000.1110)2 = (10E)16

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (110.1111)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(110.1111)2 = 1⋅1 + 1⋅2 + 1⋅4 + 1⋅8 + 0⋅16 + 1⋅32 + 1⋅64= 111

Somit ergibt sich die Dezimaldarstellung von (110.1111)2 = 111

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(110)2 = 1⋅4 + 1⋅2 + 0⋅1 = 6 = (6)16

(1111)2 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = 15 = (F)16

Somit ergibt sich die Hexadezimaldarstellung von (110.1111)2 = (6F)16

Binär und Dezimal aus Hexdezimal

Beispiel:

Gib die Zahl (92)16 sowohl im Dezimal- als auch im Binärsystem an.

Lösung einblenden

Als Binärzahl

Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:

(9)16 = 9 = 8 + 1 = 1⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (1001)2

(2)16 = 2 = 2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = (0010)2

Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.

Somit ergibt sich die Binärdarstellung von (92)16 = (1001.0010)2

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1001.0010)2 = 0⋅1 + 1⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 146

Somit ergibt sich die Dezimaldarstellung von (1001.0010)2 = 146

Binär und Dezimal aus Hexdezimal

Beispiel:

Gib die Zahl (67)16 sowohl im Dezimal- als auch im Binärsystem an.

Lösung einblenden

Als Binärzahl

Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:

(6)16 = 6 = 4 + 2 = 1⋅4 + 1⋅2 + 0⋅1 = (110)2

(7)16 = 7 = 4 + 2 + 1 = 0⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = (0111)2

Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.

Somit ergibt sich die Binärdarstellung von (67)16 = (110.0111)2

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(110.0111)2 = 1⋅1 + 1⋅2 + 1⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 1⋅64= 103

Somit ergibt sich die Dezimaldarstellung von (110.0111)2 = 103

alle Teiler einer Zahl

Beispiel:

Gib alle Teiler von 35 an:

Lösung einblenden

Wir suchen alle Teiler von 35. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.

Wenn eine Zahl ein Teiler von 35 ist, teilen wir 35 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 35 ergeben).

Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.

1 ist Teiler von 35, denn 35 = 1 ⋅ 35, also ist auch 35 ein Teiler.

2 ist kein Teiler von 35, denn 35 = 2 ⋅ 17 + 1.

3 ist kein Teiler von 35, denn 35 = 3 ⋅ 11 + 2.

4 ist kein Teiler von 35, denn 35 = 4 ⋅ 8 + 3.

5 ist Teiler von 35, denn 35 = 5 ⋅ 7, also ist auch 7 ein Teiler.

Jetzt können wir das Ausprobieren beenden, weil ja 6 kein kleinerer, sondern nur ein größerer Teiler sein könnte
- schließlich ist 6 ⋅ 6 = 36 > 35, aber die größeren Teiler haben wir ja bereits alle bei den kleineren mit erhalten.

Richtig sortiert ergibt sich also für die Teilermenge von 35:
1, 5, 7, 35

Teilbarkeitsregeln rückwärts

Beispiel:

Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 13⬜0 sowohl durch 3 als auch durch 4 teilbar ist.

Lösung einblenden

1. Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.

Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also ⬜0.

Da an der letzten Stelle eine 0 steht, muss an der vorletzten Stelle eine gerade Zahl (also 0, 2, 4, 6 oder 8) stehen, damit sie durch 4 teilbar ist (weil eben nur 00, 20, 40, 60, 80 durch 4 teilbar sind).

2. Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.

0: Dann wäre die Zahl 1300, für die Quersumme gilt dann: 1 + 3 + 0 + 0 = 4, also nicht durch 3 teilbar.

2: Dann wäre die Zahl 1320, für die Quersumme gilt dann: 1 + 3 + 2 + 0 = 6, also durch 3 teilbar.

4: Dann wäre die Zahl 1340, für die Quersumme gilt dann: 1 + 3 + 4 + 0 = 8, also nicht durch 3 teilbar.

6: Dann wäre die Zahl 1360, für die Quersumme gilt dann: 1 + 3 + 6 + 0 = 10, also nicht durch 3 teilbar.

8: Dann wäre die Zahl 1380, für die Quersumme gilt dann: 1 + 3 + 8 + 0 = 12, also durch 3 teilbar.

Die möglichen Ziffern sind also 2 und 8.

Summe von Primzahlen

Beispiel:

Schreibe 6 als Summe von zwei Primzahlen:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 6 bilden:

2 + 4 = 6, dabei ist 4 aber keine Primzahl

3 + 3 = 6, dabei ist 3 auch eine Primzahl

3 und 3 wären also zwei Primzahlen mit 3 + 3 = 6

Primfaktorzerlegung

Beispiel:

Bestimme die Primfaktorzerlegung von 55 :

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 55 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

55
= 5 ⋅ 11

kgV mit Primfaktoren

Beispiel:

Bestimme das kleinste gemeinsame Vielfache von 55 und 28.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

55
= 5 ⋅ 11

28
= 2 ⋅ 14
= 2 ⋅ 2 ⋅ 7

Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:

2 ⋅ 2(die 2 kommt in 28 insgesamt 2 mal vor)

2 ⋅ 2 ⋅ 5(die 5 kommt in 55 insgesamt 1 mal vor)

2 ⋅ 2 ⋅ 5 ⋅ 7(die 7 kommt in 28 insgesamt 1 mal vor)

2 ⋅ 2 ⋅ 5 ⋅ 7 ⋅ 11(die 11 kommt in 55 insgesamt 1 mal vor)

In 2 ⋅ 2 ⋅ 5 ⋅ 7 ⋅ 11 = 1540 sind nun alle Primteiler von 55 und alle Primteiler von 28 enthalten. Also ist 1540 ein Vielfaches von 55 und 28. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 55 oder 28 fehlen.

Das kleinste gemeinsame Vielfache von 55 und 28 ist somit :
kgV(55,28) = 1540

ggT mit Primfaktoren

Beispiel:

Bestimme den größten gemeinsamen Teiler von 66 und 55.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

66
= 2 ⋅ 33
= 2 ⋅ 3 ⋅ 11

55
= 5 ⋅ 11

Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:

11(die 11 kommt sowohl in 66 als auch 55 insgesamt 1 mal vor)

Da 11 = 11 in beiden Primfaktorzerlegungen vorkommt, muss 11 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.

Unser größter gemeinsamer Teiler von 66 und 55 ist somit :
ggT(66,55) = 11

ggT mit Euklid' schem Algor.

Beispiel:

Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 188 und 66.

Lösung einblenden

Berechnung des größten gemeinsamen Teilers von 188 und 66

=>188 = 2⋅66 + 56
=>66 = 1⋅56 + 10
=>56 = 5⋅10 + 6
=>10 = 1⋅6 + 4
=>6 = 1⋅4 + 2
=>4 = 2⋅2 + 0

also gilt: ggt(188,66)=2