Aufgabenbeispiele von MGK Klasse 8

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Dezimal aus Binär

Beispiel:

Gib die Zahl (1001.1100)2 im Dezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1001.1100)2 = 0⋅1 + 0⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 1⋅128= 156

Somit ergibt sich die Dezimaldarstellung von (1001.1100)2 = 156

Binär aus Dezimal

Beispiel:

Gib die Zahl 143 im Binärsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 143 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

143 = 128 + 15
= 128 + 8 + 7
= 128 + 8 + 4 + 3
= 128 + 8 + 4 + 2 + 1

= 1⋅128 + 0⋅64 + 0⋅32 + 0⋅16 + 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1

Somit ergibt sich die Binärdarstellung von 143 = (1000.1111)2

Binäres Addieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

              (1.0001.0101)2
             + ( 1000.0000)2

Lösung einblenden

Wir schreiben die beiden Binärzahlen untereinander und gehen wie beim schriftlichen Addieren von Dezimalzahlen vor:

              (1.0001.0101)2
             + ( 1000.0000)2
                         
              (1 1001 0101)2

negative Binärzahlen

Beispiel:

Gegeben ist die 8-Bit-Binärzahl (0111.0101)2 = 117.

Bestimme -117 als 8-Bit-Binärzahl (in der Zweierkomplement-Darstellung):

Lösung einblenden

Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).

so wird (0111.0101)2
zu (1000.1010)2

Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:

               ( 1000.1010)2
             + ( 0000.0001)2
                         
               ( 1000 1011)2

Binäres Subtrahieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

               ( 0100.0101)2
             - ( 0010.0111)2

Lösung einblenden

Wir wandeln erst den Subtrahend b, also die untere Zahl, die angezogen wird, in ihre negative Zahl um, so dass wir dann einfach die beiden Zahlen addieren können (a-b = a+(-b).

Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).

so wird (0010.0111)2
zu (1101.1000)2

Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:

               ( 1101.1000)2
             + ( 0000.0001)2
                         
               ( 1101 1001)2

Jetzt können wir einfach a=(0100.0101)2 und -b = (1101.1001)2 addieren:

               ( 0100.0101)2
             + ( 1101.1001)2
               1 1      1
              (1 0001 1110)2

Da wir ja aber nur 8-Bit Speicherplatz haben "verpufft der Overflow" und als Ergebnis stehen nur die 8 rechten Bit:

(0001.1110)2

Binäres Multiplizieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

(111.0001)2 ⋅ (111.0000)2 =

Lösung einblenden

Der zweite Faktor (111.0000)2 lässt sich als Summe von reinen 2-er-Potenzen schreiben:

                   (1.0000)2
                  (10.0000)2
              +  (100.0000)2
                 (111 0000)2

somit gilt:

(111.0001)2 ⋅ (111.0000)2 = 111.0001 ⋅ (100.0000 + 10.0000 + 1.0000)

Das Multiplizieren mit einer 2-er-Potenz bedeutet aber ja, dass man einfach die entsprechende Anzahl an Nullen hintenanhängt, somit gilt:

(111.0001)2 ⋅ (111.0000)2 = (1.1100.0100.0000)2 + (1110.0010.0000)2 + (111.0001.0000)2

Diese 3 Summanden können wir nun schrittweise addieren:

            (111.0001.0000)2
        + ( 1110.0010.0000)2
          1 11           
         (1 0101 0011 0000)2

Zu diesem Ergebnis dann die nächste Zahl dazu:

         (1.0101.0011.0000)2
       + (1.1100.0100.0000)2
         11 1            
        (11 0001 0111 0000)2

Das Ergebnis ist somit: (11.0001.0111.0000)2

(Zum Vergleich in Dezimalzahlen: 113 ⋅ 112 = 12656)

Binäres Dividieren

Beispiel:

Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:

(1100.1100)2 : (1100)2 =

Lösung einblenden
11001100 : 1100 = 10001     
- 1100                        
00001                       
- 0000                       
00011                      
- 0000                      
00110                     
- 0000                     
01100                    
- 1100                    
0000                    
  • Die obige Differenz (1100)2 - (1100)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 12 - 12 = 0
  • Die obige Differenz (01100)2 - (1100)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 12 - 12 = 0

(Zum Vergleich in Dezimalzahlen: 204 : 12 = 17)

Binär und Hexdezimal aus Dezimal

Beispiel:

Gib die Zahl 22 sowohl im Binär- als auch im Hexdezimalsystem an.

Lösung einblenden
20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Zuerst versuchen wir Schritt für Schritt die Zahl 22 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:

22 = 16 + 6
= 16 + 4 + 2

= 1⋅16 + 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1

Somit ergibt sich die Binärdarstellung von 22 = (1.0110)2

Um die Zahl 22 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:

Theoretisch könnte man 22 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.

Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1)2 = 1⋅1 = 1 = (1)16

(0110)2 = 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = 6 = (6)16

Somit ergibt sich die Hexadezimaldarstellung von (1.0110)2 = (16)16

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (1110.0110)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1110.0110)2 = 0⋅1 + 1⋅2 + 1⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 1⋅64 + 1⋅128= 230

Somit ergibt sich die Dezimaldarstellung von (1110.0110)2 = 230

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(1110)2 = 1⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = 14 = (E)16

(0110)2 = 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = 6 = (6)16

Somit ergibt sich die Hexadezimaldarstellung von (1110.0110)2 = (E6)16

Binär und Dezimal aus Hexdezimal

Beispiel:

Gib die Zahl (B1)16 sowohl im Dezimal- als auch im Binärsystem an.

Lösung einblenden

Als Binärzahl

Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:

(B)16 = 11 = 8 + 2 + 1 = 1⋅8 + 0⋅4 + 1⋅2 + 1⋅1 = (1011)2

(1)16 = 1 = 1 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (0001)2

Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.

Somit ergibt sich die Binärdarstellung von (B1)16 = (1011.0001)2

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(1011.0001)2 = 1⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 1⋅32 + 0⋅64 + 1⋅128= 177

Somit ergibt sich die Dezimaldarstellung von (1011.0001)2 = 177

Dezimal und Hexdezimal aus Binär

Beispiel:

Gib die Zahl (111.1100)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.

Lösung einblenden

Als Dezimalzahl

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
...

Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:

(111.1100)2 = 0⋅1 + 0⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 1⋅32 + 1⋅64= 124

Somit ergibt sich die Dezimaldarstellung von (111.1100)2 = 124

Als Hexadezimalzahl

Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:

(111)2 = 1⋅4 + 1⋅2 + 1⋅1 = 7 = (7)16

(1100)2 = 1⋅8 + 1⋅4 + 0⋅2 + 0⋅1 = 12 = (C)16

Somit ergibt sich die Hexadezimaldarstellung von (111.1100)2 = (7C)16

alle Teiler einer Zahl

Beispiel:

Gib alle Teiler von 21 an:

Lösung einblenden

Wir suchen alle Teiler von 21. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.

Wenn eine Zahl ein Teiler von 21 ist, teilen wir 21 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 21 ergeben).

Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.

1 ist Teiler von 21, denn 21 = 1 ⋅ 21, also ist auch 21 ein Teiler.

2 ist kein Teiler von 21, denn 21 = 2 ⋅ 10 + 1.

3 ist Teiler von 21, denn 21 = 3 ⋅ 7, also ist auch 7 ein Teiler.

4 ist kein Teiler von 21, denn 21 = 4 ⋅ 5 + 1.

Jetzt können wir das Ausprobieren beenden, weil ja 5 kein kleinerer, sondern nur ein größerer Teiler sein könnte
- schließlich ist 5 ⋅ 5 = 25 > 21, aber die größeren Teiler haben wir ja bereits alle bei den kleineren mit erhalten.

Richtig sortiert ergibt sich also für die Teilermenge von 21:
1, 3, 7, 21

Teilbarkeitsregeln rückwärts

Beispiel:

Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 166⬜ sowohl durch 3 als auch durch 4 teilbar ist.

Lösung einblenden

1. Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.

Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also 6⬜.

Bei den 60er-Zahlen muss ja 0, 4 oder 8 an der Einerstelle stehen, weil eben nur 60, 64, 68 durch 4 teilbar sind.

2. Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.

0: Dann wäre die Zahl 1660, für die Quersumme gilt dann: 1 + 6 + 6 + 0 = 13, also nicht durch 3 teilbar.

4: Dann wäre die Zahl 1664, für die Quersumme gilt dann: 1 + 6 + 6 + 4 = 17, also nicht durch 3 teilbar.

8: Dann wäre die Zahl 1668, für die Quersumme gilt dann: 1 + 6 + 6 + 8 = 21, also durch 3 teilbar.

Die einzige mögliche Ziffer ist also 8.

Summe von Primzahlen

Beispiel:

Schreibe 16 als Summe von zwei Primzahlen:

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 16 bilden:

2 + 14 = 16, dabei ist 14 aber keine Primzahl

3 + 13 = 16, dabei ist 13 auch eine Primzahl

3 und 13 wären also zwei Primzahlen mit 3 + 13 = 16

Primfaktorzerlegung

Beispiel:

Bestimme die Primfaktorzerlegung von 80 :

Lösung einblenden

Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 80 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:

80
= 2 ⋅ 40
= 2 ⋅ 2 ⋅ 20
= 2 ⋅ 2 ⋅ 2 ⋅ 10
= 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 5

kgV mit Primfaktoren

Beispiel:

Bestimme das kleinste gemeinsame Vielfache von 15 und 54.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

15
= 3 ⋅ 5

54
= 2 ⋅ 27
= 2 ⋅ 3 ⋅ 9
= 2 ⋅ 3 ⋅ 3 ⋅ 3

Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:

2(die 2 kommt in 54 insgesamt 1 mal vor)

2 ⋅ 3 ⋅ 3 ⋅ 3(die 3 kommt in 54 insgesamt 3 mal vor)

2 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5(die 5 kommt in 15 insgesamt 1 mal vor)

In 2 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 5 = 270 sind nun alle Primteiler von 15 und alle Primteiler von 54 enthalten. Also ist 270 ein Vielfaches von 15 und 54. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 15 oder 54 fehlen.

Das kleinste gemeinsame Vielfache von 15 und 54 ist somit :
kgV(15,54) = 270

ggT mit Primfaktoren

Beispiel:

Bestimme den größten gemeinsamen Teiler von 54 und 165.

Lösung einblenden

Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:

54
= 2 ⋅ 27
= 2 ⋅ 3 ⋅ 9
= 2 ⋅ 3 ⋅ 3 ⋅ 3

165
= 3 ⋅ 55
= 3 ⋅ 5 ⋅ 11

Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:

3(die 3 kommt sowohl in 54 als auch 165 insgesamt 1 mal vor)

Da 3 = 3 in beiden Primfaktorzerlegungen vorkommt, muss 3 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.

Unser größter gemeinsamer Teiler von 54 und 165 ist somit :
ggT(54,165) = 3

ggT mit Euklid' schem Algor.

Beispiel:

Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 96 und 20.

Lösung einblenden

Berechnung des größten gemeinsamen Teilers von 96 und 20

=>96 = 4⋅20 + 16
=>20 = 1⋅16 + 4
=>16 = 4⋅4 + 0

also gilt: ggt(96,20)=4