Aufgabenbeispiele von MGK Klasse 8
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Dezimal aus Binär
Beispiel:
Gib die Zahl (1011.1110)2 im Dezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1011.1110)2 = 0⋅1 + 1⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 1⋅32 + 0⋅64 + 1⋅128= 190
Somit ergibt sich die Dezimaldarstellung von (1011.1110)2 = 190
Binär aus Dezimal
Beispiel:
Gib die Zahl 234 im Binärsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 234 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
234 = 128 + 106 = 128 + 64 + 42 = 128 + 64 + 32 + 10 = 128 + 64 + 32 + 8 + 2
= 1⋅128 + 1⋅64 + 1⋅32 + 0⋅16 + 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1
Somit ergibt sich die Binärdarstellung von 234 = (1110.1010)2
Binäres Addieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
( | 1 | 0 | 1 | 0 | . | 0 | 1 | 1 | 1 | )2 | + | ( | 1 | 1 | 1 | 0 | . | 0 | 1 | 0 | 1 | )2 |
Wir schreiben die beiden Binärzahlen untereinander und gehen wie beim schriftlichen Addieren von Dezimalzahlen vor:
( | 1 | 0 | 1 | 0 | . | 0 | 1 | 1 | 1 | )2 | + | ( | 1 | 1 | 1 | 0 | . | 0 | 1 | 0 | 1 | )2 | |||||
1 | 1 | 1 | 1 | 1 | 1 | ||||||||||||||||||||||
( | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | )2 |
negative Binärzahlen
Beispiel:
Gegeben ist die 8-Bit-Binärzahl (0110.0000)2 = 96.
Bestimme -96 als 8-Bit-Binärzahl (in der Zweierkomplement-Darstellung):
Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).
so wird (0110.0000)2
zu (1001.1111)2
Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:
( | 1 | 0 | 0 | 1 | . | 1 | 1 | 1 | 1 | )2 | + | ( | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 1 | )2 | |||||
1 | 1 | 1 | 1 | 1 | |||||||||||||||||||||||
( | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | )2 |
Binäres Subtrahieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
( | 0 | 1 | 1 | 1 | . | 0 | 0 | 0 | 0 | )2 | - | ( | 0 | 1 | 1 | 0 | . | 0 | 0 | 1 | 0 | )2 |
Wir wandeln erst den Subtrahend b, also die untere Zahl, die angezogen wird, in ihre negative Zahl um, so dass wir dann einfach die beiden Zahlen addieren können (a-b = a+(-b).
Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).
so wird (0110.0010)2
zu (1001.1101)2
Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:
( | 1 | 0 | 0 | 1 | . | 1 | 1 | 0 | 1 | )2 | + | ( | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 1 | )2 | |||||
1 | |||||||||||||||||||||||||||
( | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | )2 |
Jetzt können wir einfach a=(0111.0000)2 und -b = (1001.1110)2 addieren:
( | 0 | 1 | 1 | 1 | . | 0 | 0 | 0 | 0 | )2 | + | ( | 1 | 0 | 0 | 1 | . | 1 | 1 | 1 | 0 | )2 | |||||
1 | 1 | 1 | 1 | ||||||||||||||||||||||||
( | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | )2 |
Da wir ja aber nur 8-Bit Speicherplatz haben "verpufft der Overflow" und als Ergebnis stehen nur die 8 rechten Bit:
(0000.1110)2
Binäres Multiplizieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
(101.1000)2 ⋅ (1110.0001)2 =
Der zweite Faktor (1110.0001)2 lässt sich als Summe von reinen 2-er-Potenzen schreiben:
( | 1 | )2 | ( | 1 | 0 | . | 0 | 0 | 0 | 0 | )2 | ( | 1 | 0 | 0 | . | 0 | 0 | 0 | 0 | )2 | + | ( | 1 | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | )2 |
( | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | )2 |
somit gilt:
(101.1000)2 ⋅ (1110.0001)2 = 101.1000 ⋅ (1000.0000 + 100.0000 + 10.0000 + 1)
Das Multiplizieren mit einer 2-er-Potenz bedeutet aber ja, dass man einfach die entsprechende Anzahl an Nullen hintenanhängt, somit gilt:
(101.1000)2 ⋅ (1110.0001)2 = (10.1100.0000.0000)2 + (1.0110.0000.0000)2 + (1011.0000.0000)2 + (101.1000)2
Diese 4 Summanden können wir nun schrittweise addieren:
( | 1 | 0 | 1 | . | 1 | 0 | 0 | 0 | )2 | + | ( | 1 | 0 | 1 | 1 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | )2 | |
( | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | )2 |
Zu diesem Ergebnis dann die nächste Zahl dazu:
( | 1 | 0 | 1 | 1 | . | 0 | 1 | 0 | 1 | . | 1 | 0 | 0 | 0 | )2 | + | ( | 1 | . | 0 | 1 | 1 | 0 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | )2 |
1 | 1 | 1 | 1 | ||||||||||||||||||||||||
( | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | )2 |
Zu diesem Ergebnis dann die nächste Zahl dazu:
( | 1 | 0 | . | 0 | 0 | 0 | 1 | . | 0 | 1 | 0 | 1 | . | 1 | 0 | 0 | 0 | )2 | + | ( | 1 | 0 | . | 1 | 1 | 0 | 0 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 0 | )2 |
1 | |||||||||||||||||||||||||||
( | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | )2 |
Das Ergebnis ist somit: (100.1101.0101.1000)2
(Zum Vergleich in Dezimalzahlen: 88 ⋅ 225 = 19800)
Binäres Dividieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
(110.1110)2 : (1011)2 =
1 | 1 | 0 | 1 | 1 | 1 | 0 | : | 1 | 0 | 1 | 1 | = | 1 | 0 | 1 | 0 |
- | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
- | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 |
- | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 |
- | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
- Die obige Differenz (1101)2 - (1011)2 = (10)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 13 - 11 = 2
- Die obige Differenz (01011)2 - (1011)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 11 - 11 = 0
(Zum Vergleich in Dezimalzahlen: 110 : 11 = 10)
Binär und Hexdezimal aus Dezimal
Beispiel:
Gib die Zahl 274 sowohl im Binär- als auch im Hexdezimalsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 274 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
274 = 256 + 18 = 256 + 16 + 2
= 1⋅256 + 0⋅128 + 0⋅64 + 0⋅32 + 1⋅16 + 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1
Somit ergibt sich die Binärdarstellung von 274 = (1.0001.0010)2
Um die Zahl 274 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:
Theoretisch könnte man 274 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.
Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1)2 = 1⋅1 = 1 = (1)16
(0001)2 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = 1 = (1)16
(0010)2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 2 = (2)16
Somit ergibt sich die Hexadezimaldarstellung von (1.0001.0010)2 = (112)16
Dezimal und Hexdezimal aus Binär
Beispiel:
Gib die Zahl (1010.0111)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1010.0111)2 = 1⋅1 + 1⋅2 + 1⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 0⋅64 + 1⋅128= 167
Somit ergibt sich die Dezimaldarstellung von (1010.0111)2 = 167
Als Hexadezimalzahl
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1010)2 = 1⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = 10 = (A)16
(0111)2 = 0⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = 7 = (7)16
Somit ergibt sich die Hexadezimaldarstellung von (1010.0111)2 = (A7)16
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (126)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(1)16 = 1 = 1 = 1⋅1 = (1)2
(2)16 = 2 = 2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = (0010)2
(6)16 = 6 = 4 + 2 = 0⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = (0110)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (126)16 = (1.0010.0110)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1.0010.0110)2 = 0⋅1 + 1⋅2 + 1⋅4 + 0⋅8 + 0⋅16 + 1⋅32 + 0⋅64 + 0⋅128 + 1⋅256= 294
Somit ergibt sich die Dezimaldarstellung von (1.0010.0110)2 = 294
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (72)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(7)16 = 7 = 4 + 2 + 1 = 1⋅4 + 1⋅2 + 1⋅1 = (111)2
(2)16 = 2 = 2 = 0⋅8 + 0⋅4 + 1⋅2 + 0⋅1 = (0010)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (72)16 = (111.0010)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(111.0010)2 = 0⋅1 + 1⋅2 + 0⋅4 + 0⋅8 + 1⋅16 + 1⋅32 + 1⋅64= 114
Somit ergibt sich die Dezimaldarstellung von (111.0010)2 = 114
alle Teiler einer Zahl
Beispiel:
Bestimme alle Teiler von 20 an:
Wir suchen alle Teiler von 20. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.
Wenn eine Zahl ein Teiler von 20 ist, teilen wir 20 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 20 ergeben).
Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.
1 ist Teiler von 20, denn 20 = 1 ⋅ 20, also ist auch 20 ein Teiler.
2 ist Teiler von 20, denn 20 = 2 ⋅ 10, also ist auch 10 ein Teiler.
3 ist kein Teiler von 20, denn 20 = 3 ⋅ 6 + 2.
4 ist Teiler von 20, denn 20 = 4 ⋅ 5, also ist auch 5 ein Teiler.
Jetzt können wir das Ausprobieren beenden, weil wir ja bereits 5 bei den größeren Teiler drin haben, also kann es jetzt keine weiteren (kleine) Teiler mehr geben.
Richtig sortiert ergibt sich also für die Teilermenge von 20:
1, 2, 4, 5, 10, 20
Teilbarkeitsregeln rückwärts
Beispiel:
Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 51⬜ sowohl durch 3 als auch durch 4 teilbar ist.
Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also 1⬜.
Bei den 10er-Zahlen muss ja 2 oder 6 an der Einerstelle stehen, weil eben nur 12, 16 durch 4 teilbar sind.
Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.
2: Dann wäre die Zahl 512, für die Quersumme gilt dann: 5 + 1 + 2 = 8, also nicht durch 3 teilbar.
6: Dann wäre die Zahl 516, für die Quersumme gilt dann: 5 + 1 + 6 = 12, also durch 3 teilbar.
Die einzige mögliche Ziffer ist also 6.
Summe von Primzahlen
Beispiel:
Schreibe 28 als Summe von zwei Primzahlen:
Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 28 bilden:
2 + 26 = 28, dabei ist 26 aber keine Primzahl
3 + 25 = 28, dabei ist 25 aber keine Primzahl
5 + 23 = 28, dabei ist 23 auch eine Primzahl
5 und 23 wären also zwei Primzahlen mit 5 + 23 = 28
Primfaktorzerlegung
Beispiel:
Bestimme die Primfaktorzerlegung von 42 :
Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 42 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:
42
= 2 ⋅ 21
= 2 ⋅ 3 ⋅ 7
kgV mit Primfaktoren
Beispiel:
Bestimme das kleinste gemeinsame Vielfache von 50 und 25.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
50
= 2 ⋅ 25
= 2 ⋅ 5 ⋅ 5
25
= 5 ⋅ 5
Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:
2(die 2 kommt in 50 insgesamt 1 mal vor)
2 ⋅ 5 ⋅ 5(die 5 kommt in 50 insgesamt 2 mal vor)
In 2 ⋅ 5 ⋅ 5 = 50 sind nun alle Primteiler von 50 und alle Primteiler von 25 enthalten. Also ist 50 ein Vielfaches von 50 und 25. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 50 oder 25 fehlen.
Das kleinste gemeinsame Vielfache von 50 und 25 ist somit :
kgV(50,25) = 50
ggT mit Primfaktoren
Beispiel:
Bestimme den größten gemeinsamen Teiler von 150 und 180.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
150
= 2 ⋅ 75
= 2 ⋅ 3 ⋅ 25
= 2 ⋅ 3 ⋅ 5 ⋅ 5
180
= 2 ⋅ 90
= 2 ⋅ 2 ⋅ 45
= 2 ⋅ 2 ⋅ 3 ⋅ 15
= 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5
Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:
2(die 2 kommt sowohl in 150 als auch 180 insgesamt 1 mal vor)
2 ⋅ 3(die 3 kommt sowohl in 150 als auch 180 insgesamt 1 mal vor)
2 ⋅ 3 ⋅ 5(die 5 kommt sowohl in 150 als auch 180 insgesamt 1 mal vor)
Da 2 ⋅ 3 ⋅ 5 = 30 in beiden Primfaktorzerlegungen vorkommt, muss 30 auf jeden Fall ein Teiler von beiden Zahlen sein. Andererseits kann es keinen größeren gemeinsamen Teiler geben, denn sonst müsste ja in diesem größeren gemeinsamen Teiler noch ein weiterer gemeinsamer Primfaktor sein.
Unser größter gemeinsamer Teiler von 150 und 180 ist somit :
ggT(150,180) = 30
ggT mit Euklid' schem Algor.
Beispiel:
Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 35 und 24.
Berechnung des größten gemeinsamen Teilers von 35 und 24
=>35 | = 1⋅24 + 11 |
=>24 | = 2⋅11 + 2 |
=>11 | = 5⋅2 + 1 |
=>2 | = 2⋅1 + 0 |
also gilt: ggt(35,24)=1