Aufgabenbeispiele von MGK Klasse 8
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Dezimal aus Binär
Beispiel:
Gib die Zahl (10.0011)2 im Dezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(10.0011)2 = 1⋅1 + 1⋅2 + 0⋅4 + 0⋅8 + 0⋅16 + 1⋅32= 35
Somit ergibt sich die Dezimaldarstellung von (10.0011)2 = 35
Binär aus Dezimal
Beispiel:
Gib die Zahl 244 im Binärsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 244 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
244 = 128 + 116 = 128 + 64 + 52 = 128 + 64 + 32 + 20 = 128 + 64 + 32 + 16 + 4
= 1⋅128 + 1⋅64 + 1⋅32 + 1⋅16 + 0⋅8 + 1⋅4 + 0⋅2 + 0⋅1
Somit ergibt sich die Binärdarstellung von 244 = (1111.0100)2
Binäres Addieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
( | 1 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 1 | 0 | )2 | + | ( | 1 | 0 | 0 | 0 | . | 0 | 1 | 1 | 0 | )2 |
Wir schreiben die beiden Binärzahlen untereinander und gehen wie beim schriftlichen Addieren von Dezimalzahlen vor:
( | 1 | . | 0 | 0 | 0 | 0 | . | 0 | 0 | 1 | 0 | )2 | + | ( | 1 | 0 | 0 | 0 | . | 0 | 1 | 1 | 0 | )2 | |||
1 | 1 | ||||||||||||||||||||||||||
( | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | )2 |
negative Binärzahlen
Beispiel:
Gegeben ist die 8-Bit-Binärzahl (0101.0110)2 = 86.
Bestimme -86 als 8-Bit-Binärzahl (in der Zweierkomplement-Darstellung):
Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).
so wird (0101.0110)2
zu (1010.1001)2
Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:
( | 1 | 0 | 1 | 0 | . | 1 | 0 | 0 | 1 | )2 | + | ( | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 1 | )2 | |||||
1 | |||||||||||||||||||||||||||
( | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | )2 |
Binäres Subtrahieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
( | 0 | 1 | 1 | 1 | . | 0 | 1 | 0 | 1 | )2 | - | ( | 0 | 1 | 0 | 0 | . | 1 | 0 | 0 | 1 | )2 |
Wir wandeln erst den Subtrahend b, also die untere Zahl, die angezogen wird, in ihre negative Zahl um, so dass wir dann einfach die beiden Zahlen addieren können (a-b = a+(-b).
Wir invertieren im ersten Schritt unsere Binärzahl (d.h. aus jeder 0 wird eine 1 und aus jeder 1 wird eine 0).
so wird (0100.1001)2
zu (1011.0110)2
Jetzt müssen wir nur noch die binäre 1 auf diese invertierte Zahl draufaddieren:
( | 1 | 0 | 1 | 1 | . | 0 | 1 | 1 | 0 | )2 | + | ( | 0 | 0 | 0 | 0 | . | 0 | 0 | 0 | 1 | )2 | |||||
( | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | )2 |
Jetzt können wir einfach a=(0111.0101)2 und -b = (1011.0111)2 addieren:
( | 0 | 1 | 1 | 1 | . | 0 | 1 | 0 | 1 | )2 | + | ( | 1 | 0 | 1 | 1 | . | 0 | 1 | 1 | 1 | )2 | |||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||||||||
( | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | )2 |
Da wir ja aber nur 8-Bit Speicherplatz haben "verpufft der Overflow" und als Ergebnis stehen nur die 8 rechten Bit:
(0010.1100)2
Binäres Multiplizieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
(101.1111)2 ⋅ (110)2 =
Der zweite Faktor (110)2 lässt sich als Summe von reinen 2-er-Potenzen schreiben:
( | 1 | 0 | )2 | + | ( | 1 | 0 | 0 | )2 | ||||||||||||||||||
( | 1 | 1 | 0 | )2 |
somit gilt:
(101.1111)2 ⋅ (110)2 = 101.1111 ⋅ (100 + 10)
Das Multiplizieren mit einer 2-er-Potenz bedeutet aber ja, dass man einfach die entsprechende Anzahl an Nullen hintenanhängt, somit gilt:
(101.1111)2 ⋅ (110)2 = (1.0111.1100)2 + (1011.1110)2
Diese 2 Summanden können wir nun schrittweise addieren:
( | 1 | 0 | 1 | 1 | . | 1 | 1 | 1 | 0 | )2 | + | ( | 1 | . | 0 | 1 | 1 | 1 | . | 1 | 1 | 0 | 0 | )2 | |||
1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||||||||||||
( | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | )2 |
Das Ergebnis ist somit: (10.0011.1010)2
(Zum Vergleich in Dezimalzahlen: 95 ⋅ 6 = 570)
Binäres Dividieren
Beispiel:
Berechne ohne die Binärzahlen in Dezimalzahlen umzuwandeln:
(1101.0010)2 : (1110)2 =
1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | : | 1 | 1 | 1 | 0 | = | 1 | 1 | 1 | 1 |
- | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 |
- | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
- | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
- | 1 | 1 | 1 | 0 |
0 | 0 | 0 | 0 |
- Die obige Differenz (11010)2 - (1110)2 = (1100)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 26 - 14 = 12
- Die obige Differenz (11000)2 - (1110)2 = (1010)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 24 - 14 = 10
- Die obige Differenz (10101)2 - (1110)2 = (111)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 21 - 14 = 7
- Die obige Differenz (01110)2 - (1110)2 = (0)2 kann man entweder mit binärer Subtraktion berechnen oder - oft schneller - durch Umrechnen in Dezimalzahlen: 14 - 14 = 0
(Zum Vergleich in Dezimalzahlen: 210 : 14 = 15)
Binär und Hexdezimal aus Dezimal
Beispiel:
Gib die Zahl 286 sowohl im Binär- als auch im Hexdezimalsystem an.
Zuerst versuchen wir Schritt für Schritt die Zahl 286 als Summe von 2er-Potenzen (siehe rechts) zu schreiben:
286 = 256 + 30 = 256 + 16 + 14 = 256 + 16 + 8 + 6 = 256 + 16 + 8 + 4 + 2
= 1⋅256 + 0⋅128 + 0⋅64 + 0⋅32 + 1⋅16 + 1⋅8 + 1⋅4 + 1⋅2 + 0⋅1
Somit ergibt sich die Binärdarstellung von 286 = (1.0001.1110)2
Um die Zahl 286 als Hexadzimalzahl auszugeben, gibt es zwei Möglichkeiten:
Theoretisch könnte man 286 wieder als Summe von 16er-Potenzen zerlegen und so die Koeffizienten vor den 16er-Potenzen als Hexadezimalzahl erhalten.
Wenn man bereits die Binärzahl hat, gibt es aber einen schnelleren Weg;
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(1)2 = 1⋅1 = 1 = (1)16
(0001)2 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = 1 = (1)16
(1110)2 = 1⋅8 + 1⋅4 + 1⋅2 + 0⋅1 = 14 = (E)16
Somit ergibt sich die Hexadezimaldarstellung von (1.0001.1110)2 = (11E)16
Dezimal und Hexdezimal aus Binär
Beispiel:
Gib die Zahl (10.0001)2 sowohl im Dezimal- als auch im Hexdezimalsystem an.
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(10.0001)2 = 1⋅1 + 0⋅2 + 0⋅4 + 0⋅8 + 0⋅16 + 1⋅32= 33
Somit ergibt sich die Dezimaldarstellung von (10.0001)2 = 33
Als Hexadezimalzahl
Jeder 4-er-Block wird in eine Hexadezimalzahl umgewandelt und diese werden hintereinander gesetzt:
(10)2 = 1⋅2 + 0⋅1 = 2 = (2)16
(0001)2 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = 1 = (1)16
Somit ergibt sich die Hexadezimaldarstellung von (10.0001)2 = (21)16
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (7D)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(7)16 = 7 = 4 + 2 + 1 = 1⋅4 + 1⋅2 + 1⋅1 = (111)2
(D)16 = 13 = 8 + 4 + 1 = 1⋅8 + 1⋅4 + 0⋅2 + 1⋅1 = (1101)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (7D)16 = (111.1101)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(111.1101)2 = 1⋅1 + 0⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 1⋅32 + 1⋅64= 125
Somit ergibt sich die Dezimaldarstellung von (111.1101)2 = 125
Binär und Dezimal aus Hexdezimal
Beispiel:
Gib die Zahl (11F)16 sowohl im Dezimal- als auch im Binärsystem an.
Als Binärzahl
Jede Ziffer im Hexadezimalsystem kann in einen 4-er-Block im Binärsystem umgewandelt werden. Dazu zerlegen wir den Wert einfach als Summe der 2-er-Potenzen 8,4,2 und 1:
(1)16 = 1 = 1 = 1⋅1 = (1)2
(1)16 = 1 = 1 = 0⋅8 + 0⋅4 + 0⋅2 + 1⋅1 = (0001)2
(F)16 = 15 = 8 + 4 + 2 + 1 = 1⋅8 + 1⋅4 + 1⋅2 + 1⋅1 = (1111)2
Diese binären 4-er-Blöcke können dann einfach hintereinander gesetzt werden.
Somit ergibt sich die Binärdarstellung von (11F)16 = (1.0001.1111)2
Als Dezimalzahl
Um die (für uns normale) Dezimalzahl zu berechnen, müssen wir einfach jede Ziffer mit der zugehörigen 2er-Potenz ihrer Stelle (siehe rechts) multiplizieren. Am besten tun wir das von rechts nach links:
(1.0001.1111)2 = 1⋅1 + 1⋅2 + 1⋅4 + 1⋅8 + 1⋅16 + 0⋅32 + 0⋅64 + 0⋅128 + 1⋅256= 287
Somit ergibt sich die Dezimaldarstellung von (1.0001.1111)2 = 287
alle Teiler einer Zahl
Beispiel:
Gib alle Teiler von 72 an:
Wir suchen alle Teiler von 72. Dabei beginnen wir mit der 1 und testen die weiteren Zahlen.
Wenn eine Zahl ein Teiler von 72 ist, teilen wir 72 durch diese Zahl und erhalten so automatisch einen weiteren Teiler. Wir erhalten so also immer Teiler-Paare mit einem größerem und einem kleineren Teiler (die multipliziert wieder 72 ergeben).
Somit genügt es, nur die kleineren Teiler zu finden, weil wir ja so die Größeren automatisch mit erhalten.
1 ist Teiler von 72, denn 72 = 1 ⋅ 72, also ist auch 72 ein Teiler.
2 ist Teiler von 72, denn 72 = 2 ⋅ 36, also ist auch 36 ein Teiler.
3 ist Teiler von 72, denn 72 = 3 ⋅ 24, also ist auch 24 ein Teiler.
4 ist Teiler von 72, denn 72 = 4 ⋅ 18, also ist auch 18 ein Teiler.
5 ist kein Teiler von 72, denn 72 = 5 ⋅ 14 + 2.
6 ist Teiler von 72, denn 72 = 6 ⋅ 12, also ist auch 12 ein Teiler.
7 ist kein Teiler von 72, denn 72 = 7 ⋅ 10 + 2.
8 ist Teiler von 72, denn 72 = 8 ⋅ 9, also ist auch 9 ein Teiler.
Jetzt können wir das Ausprobieren beenden, weil wir ja bereits 9 bei den größeren Teiler drin haben, also kann es jetzt keine weiteren (kleine) Teiler mehr geben.
Richtig sortiert ergibt sich also für die Teilermenge von 72:
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72
Teilbarkeitsregeln rückwärts
Beispiel:
Bestimme eine Ziffer, die man für das Kästchen ⬜ einsetzen kann, damit 169⬜ sowohl durch 3 als auch durch 4 teilbar ist.
1. Wir schauen zuerst, welche Ziffern möglich sind, dass die Zahl durch 4 teilbar ist.
Dazu müssen wir ja nur die letzten beiden Stellen betrachten, also 9⬜.
Bei den 90er-Zahlen muss ja 2 oder 6 an der Einerstelle stehen, weil eben nur 92, 96 durch 4 teilbar sind.
2. Diese verbleibenden Möglichkeiten überprüfen wir nun noch auf Teilbarkeit durch 3.
2: Dann wäre die Zahl 1692, für die Quersumme gilt dann: 1 + 6 + 9 + 2 = 18, also durch 3 teilbar.
6: Dann wäre die Zahl 1696, für die Quersumme gilt dann: 1 + 6 + 9 + 6 = 22, also nicht durch 3 teilbar.
Die einzige mögliche Ziffer ist also 2.
Summe von Primzahlen
Beispiel:
Schreibe 34 als Summe von zwei Primzahlen:
Wir testen der Reihe nach alle Primzahlen, ob sie mit einer weiteren Primzahl die Summe von 34 bilden:
2 + 32 = 34, dabei ist 32 aber keine Primzahl
3 + 31 = 34, dabei ist 31 auch eine Primzahl
3 und 31 wären also zwei Primzahlen mit 3 + 31 = 34
Primfaktorzerlegung
Beispiel:
Bestimme die Primfaktorzerlegung von 60 :
Wir testen der Reihe nach alle Primzahlen, ob sie Teiler von 60 sind und zerlegen dann immer die Zahl in die Primzahl und den anderen Faktor:
60
= 2 ⋅ 30
= 2 ⋅ 2 ⋅ 15
= 2 ⋅ 2 ⋅ 3 ⋅ 5
kgV mit Primfaktoren
Beispiel:
Bestimme das kleinste gemeinsame Vielfache von 42 und 30.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
42
= 2 ⋅ 21
= 2 ⋅ 3 ⋅ 7
30
= 2 ⋅ 15
= 2 ⋅ 3 ⋅ 5
Jetzt gehen wir jeden Primteiler, der in einer den beiden Zerlegungen vorkommt, durch und stecken diesen in seiner maximalen Potenz (also so oft, wie er höchstens in einer Zahl vorkommt) in unsere neue Zahl:
2(die 2 kommt in 42 insgesamt 1 mal vor)
2 ⋅ 3(die 3 kommt in 42 insgesamt 1 mal vor)
2 ⋅ 3 ⋅ 5(die 5 kommt in 30 insgesamt 1 mal vor)
2 ⋅ 3 ⋅ 5 ⋅ 7(die 7 kommt in 42 insgesamt 1 mal vor)
In 2 ⋅ 3 ⋅ 5 ⋅ 7 = 210 sind nun alle Primteiler von 42 und alle Primteiler von 30 enthalten. Also ist 210 ein Vielfaches von 42 und 30. Es muss auch das kleinste sein, denn bei einer noch kleineren Zahl würde mindestens ein Primfaktor von 42 oder 30 fehlen.
Das kleinste gemeinsame Vielfache von 42 und 30 ist somit :
kgV(42,30) = 210
ggT mit Primfaktoren
Beispiel:
Bestimme den größten gemeinsamen Teiler von 180 und 77.
Wir erstellen zuerst die Primfaktorzerlegungen von den beiden Zahlen:
180
= 2 ⋅ 90
= 2 ⋅ 2 ⋅ 45
= 2 ⋅ 2 ⋅ 3 ⋅ 15
= 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5
77
= 7 ⋅ 11
Jetzt gehen wir alle Primteiler, die in beiden Zerlegungen vorkommen, durch und stecken diese in ihrer gemeinsamen Potenz (also so oft, wie sie höchstens in beiden Zahlen vorkommen) in unsere neue Zahl:
Da kein einziger Primfaktor sowohl in 180 als auch in 77 vorkommt, ist 1 der einzige und damit auch der größte gemeinsame Teiler.
Unser größter gemeinsamer Teiler von 180 und 77 ist somit :
ggT(180,77) = 1
ggT mit Euklid' schem Algor.
Beispiel:
Berechne mit Hilfe des Euklid'schen Algorithmus den größten gemeinsamen Teiler von 325 und 35.
Berechnung des größten gemeinsamen Teilers von 325 und 35
=>325 | = 9⋅35 + 10 |
=>35 | = 3⋅10 + 5 |
=>10 | = 2⋅5 + 0 |
also gilt: ggt(325,35)=5