Aufgabenbeispiele von Rotationskörper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 5 2x +2 soll im Intervall [0,3] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 3 ( 5 2x +2 ) 2 x
= π 0 3 25 ( 2x +2 ) 2 x
= π 0 3 25 ( 2x +2 ) -2 x

= π [ - 25 2 ( 2x +2 ) -1 ] 0 3

= π [ - 25 2( 2x +2 ) ] 0 3

= π · ( - 25 2( 23 +2 ) + 25 2( 20 +2 ) )

= π · ( - 25 2( 6 +2 ) + 25 2( 0 +2 ) )

= π · ( - 25 2 8 + 25 2 2 )

= π · ( - 25 2 ( 1 8 ) + 25 2 ( 1 2 ) )

= π · ( - 25 16 + 25 4 )

= π · ( - 25 16 + 100 16 )

= π · 75 16

= 75 16 π


≈ 14,726

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 6 x 2 und g(x)= 6 ( x +2 ) 2 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,3] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 3 ( 6 x 2 ) 2 x - π 1 3 ( 6 ( x +2 ) 2 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 3 ( ( 6 x 2 ) 2 - ( 6 ( x +2 ) 2 ) 2 ) x

= π 1 3 ( 36 x 4 - 36 ( x +2 ) 4 ) x

= π 1 3 ( - 36 ( x +2 ) 4 + 36 x 4 ) x
= π 1 3 ( -36 ( x +2 ) -4 +36 x -4 ) x

= π [ 12 ( x +2 ) -3 -12 x -3 ] 1 3

= π [ 12 ( x +2 ) 3 - 12 x 3 ] 1 3

= π · ( 12 ( 3 +2 ) 3 - 12 3 3 - ( 12 ( 1 +2 ) 3 - 12 1 3 ) )

= π · ( 12 5 3 -12( 1 27 ) - ( 12 3 3 -121 ) )

= π · ( 12( 1 125 ) - 4 9 - ( 12( 1 27 ) -12 ) )

= π · ( 12 125 - 4 9 - ( 4 9 -12 ) )

= π · ( 108 1125 - 500 1125 - ( 4 9 - 108 9 ) )

= π · ( - 392 1125 -1 · ( - 104 9 ) )

= π · ( - 392 1125 + 104 9 )

= π · ( - 392 1125 + 13000 1125 )

= π · ( - 392 1125 + 104 9 )

= π · 12608 1125

= 12608 1125 π


≈ 35,208

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 3x +4 und der Geraden y = 4 rotiert im Intervall [0,3] um diese Gerade y = 4 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 4 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-4 = 3x +4 -4
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 3 ( 3x +4 -4 ) 2 x

= π 0 3 ( 3x ) 2 x
= π 0 3 9 x 2 x

= π [ 3 x 3 ] 0 3

= π · ( 3 3 3 -3 0 3 )

= π · ( 327 -30 )

= π · ( 81 +0 )

= π · 81

= 81π


≈ 254,469