Aufgabenbeispiele von Rotationskörper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= x +4 soll im Intervall [-1,1] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π -1 1 ( x +4 ) 2 x

= π [ 1 3 ( x +4 ) 3 ] -1 1

= π · ( 1 3 ( 1 +4 ) 3 - 1 3 ( -1 +4 ) 3 )

= π · ( 1 3 5 3 - 1 3 3 3 )

= π · ( 1 3 125 - 1 3 27 )

= π · ( 125 3 -9 )

= π · ( 125 3 - 27 3 )

= π · 98 3

= 98 3 π


≈ 102,625

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 4 x und g(x)= 4 x +4 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,4] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 4 ( 4 x ) 2 x - π 1 4 ( 4 x +4 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 4 ( ( 4 x ) 2 - ( 4 x +4 ) 2 ) x

= π 1 4 ( 16 x 2 - 16 ( x +4 ) 2 ) x

= π 1 4 ( - 16 ( x +4 ) 2 + 16 x 2 ) x
= π 1 4 ( -16 ( x +4 ) -2 +16 x -2 ) x

= π [ 16 ( x +4 ) -1 -16 x -1 ] 1 4

= π [ 16 x +4 - 16 x ] 1 4

= π · ( 16 4 +4 - 16 4 - ( 16 1 +4 - 16 1 ) )

= π · ( 16 8 -16( 1 4 ) - ( 16 5 -161 ) )

= π · ( 16( 1 8 ) -4 - ( 16( 1 5 ) -16 ) )

= π · ( 2 -4 - ( 16 5 -16 ) )

= π · ( -2 - ( 16 5 - 80 5 ) )

= π · ( -2 -1 · ( - 64 5 ) )

= π · ( -2 + 64 5 )

= π · ( - 10 5 + 64 5 )

= π · ( -2 + 64 5 )

= π · 54 5

= 54 5 π


≈ 33,929

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= x +4 und der Geraden y = 4 rotiert im Intervall [0,2] um diese Gerade y = 4 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 4 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-4 = x +4 -4
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 2 ( x +4 -4 ) 2 x

= π 0 2 ( x ) 2 x
= π 0 2 x 2 x

= π [ 1 3 x 3 ] 0 2

= π · ( 1 3 2 3 - 1 3 0 3 )

= π · ( 1 3 8 - 1 3 0 )

= π · ( 8 3 +0 )

= π · ( 8 3 +0 )

= π · 8 3

= 8 3 π


≈ 8,378