Aufgabenbeispiele von Rotationskörper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= e -x soll im Intervall [0,2] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 2 ( e -x ) 2 x
= π 0 2 e -x x

= π [ - e -x ] 0 2

= π · ( - e -2 + e -0 )

= π · ( - e -2 +1 )


≈ 2,716

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 3 x und g(x)= 3 2x +1 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 3 x ) 2 x - π 1 2 ( 3 2x +1 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 3 x ) 2 - ( 3 2x +1 ) 2 ) x

= π 1 2 ( 9 x 2 - 9 ( 2x +1 ) 2 ) x

= π 1 2 ( - 9 ( 2x +1 ) 2 + 9 x 2 ) x
= π 1 2 ( -9 ( 2x +1 ) -2 +9 x -2 ) x

= π [ 9 2 ( 2x +1 ) -1 -9 x -1 ] 1 2

= π [ 9 2( 2x +1 ) - 9 x ] 1 2

= π · ( 9 2( 22 +1 ) - 9 2 - ( 9 2( 21 +1 ) - 9 1 ) )

= π · ( 9 2( 4 +1 ) -9( 1 2 ) - ( 9 2( 2 +1 ) -91 ) )

= π · ( 9 2 5 - 9 2 - ( 9 2 3 -9 ) )

= π · ( 9 2 ( 1 5 ) - 9 2 - ( 9 2 ( 1 3 ) -9 ) )

= π · ( 9 10 - 9 2 - ( 3 2 -9 ) )

= π · ( 9 10 - 45 10 - ( 3 2 - 18 2 ) )

= π · ( - 18 5 -1 · ( - 15 2 ) )

= π · ( - 18 5 + 15 2 )

= π · 39 10

= 39 10 π


≈ 12,252

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 3 e 0,4x und der Geraden y = 3 rotiert im Intervall [0,1] um diese Gerade y = 3 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 3 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-3 = 3 e 0,4x -3
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 1 ( 3 e 0,4x -3 ) 2 x

= π 0 1 ( 9 e 0,8x -18 e 0,4x +9 ) x

= π [ 45 4 e 0,8x -45 e 0,4x +9x ] 0 1

= π · ( 45 4 e 0,81 -45 e 0,41 +91 - ( 45 4 e 0,80 -45 e 0,40 +90 ) )

= π · ( 45 4 e 0,8 -45 e 0,4 +9 - ( 45 4 e 0 -45 e 0 +0) )

= π · ( 45 4 e 0,8 -45 e 0,4 +9 - ( 45 4 -45 +0) )

= π · ( 45 4 e 0,8 -45 e 0,4 +9 - ( 45 4 - 180 4 +0) )

= π · ( 45 4 e 0,8 -45 e 0,4 +9 -1 · ( - 135 4 ) )

= π · ( 45 4 e 0,8 -45 e 0,4 +9 + 135 4 )

= π · ( 45 4 e 0,8 -45 e 0,4 + 171 4 )


≈ 2,058