Aufgabenbeispiele von Rotationskörper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= x +1 soll im Intervall [-1,0] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π -1 0 ( x +1 ) 2 x

= π [ 1 3 ( x +1 ) 3 ] -1 0

= π · ( 1 3 ( 0 +1 ) 3 - 1 3 ( -1 +1 ) 3 )

= π · ( 1 3 1 3 - 1 3 0 3 )

= π · ( 1 3 1 - 1 3 0 )

= π · ( 1 3 +0 )

= π · ( 1 3 +0 )

= π · 1 3

= 1 3 π


≈ 1,047

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 4 x und g(x)= 4 3x +2 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,2] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 2 ( 4 x ) 2 x - π 1 2 ( 4 3x +2 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 2 ( ( 4 x ) 2 - ( 4 3x +2 ) 2 ) x

= π 1 2 ( 16 x 2 - 16 ( 3x +2 ) 2 ) x

= π 1 2 ( - 16 ( 3x +2 ) 2 + 16 x 2 ) x
= π 1 2 ( -16 ( 3x +2 ) -2 +16 x -2 ) x

= π [ 16 3 ( 3x +2 ) -1 -16 x -1 ] 1 2

= π [ 16 3( 3x +2 ) - 16 x ] 1 2

= π · ( 16 3( 32 +2 ) - 16 2 - ( 16 3( 31 +2 ) - 16 1 ) )

= π · ( 16 3( 6 +2 ) -16( 1 2 ) - ( 16 3( 3 +2 ) -161 ) )

= π · ( 16 3 8 -8 - ( 16 3 5 -16 ) )

= π · ( 16 3 ( 1 8 ) -8 - ( 16 3 ( 1 5 ) -16 ) )

= π · ( 2 3 -8 - ( 16 15 -16 ) )

= π · ( 2 3 - 24 3 - ( 16 15 - 240 15 ) )

= π · ( - 22 3 -1 · ( - 224 15 ) )

= π · ( - 22 3 + 224 15 )

= π · 38 5

= 38 5 π


≈ 23,876

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 2x +2 und der Geraden y = 2 rotiert im Intervall [0,2] um diese Gerade y = 2 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 2 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-2 = 2x +2 -2
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 2 ( 2x +2 -2 ) 2 x

= π 0 2 ( 2x ) 2 x
= π 0 2 4 x 2 x

= π [ 4 3 x 3 ] 0 2

= π · ( 4 3 2 3 - 4 3 0 3 )

= π · ( 4 3 8 - 4 3 0 )

= π · ( 32 3 +0 )

= π · ( 32 3 +0 )

= π · 32 3

= 32 3 π


≈ 33,51