Aufgabenbeispiele von Rotationskörper

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Rotationskörper

Beispiel:

Die Fläche unter dem Graph von f mit f(x)= 3 2x +1 soll im Intervall [0,2] um die x-Achse rotieren.
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
V = π 0 2 ( 3 2x +1 ) 2 x
= π 0 2 9 ( 2x +1 ) 2 x
= π 0 2 9 ( 2x +1 ) -2 x

= π [ - 9 2 ( 2x +1 ) -1 ] 0 2

= π [ - 9 2( 2x +1 ) ] 0 2

= π · ( - 9 2( 22 +1 ) + 9 2( 20 +1 ) )

= π · ( - 9 2( 4 +1 ) + 9 2( 0 +1 ) )

= π · ( - 9 2 5 + 9 2 )

= π · ( - 9 2 ( 1 5 ) + 9 2 1 )

= π · ( - 9 10 + 9 2 )

= π · ( - 9 10 + 45 10 )

= π · 18 5

= 18 5 π


≈ 11,31

Rotationskörper zwischen zwei Kurven

Beispiel:

Die Graphen der Funktionen f und g mit f(x)= 4 x und g(x)= 4 2x +3 schließen eine Fläche ein. Diese Fläche rotiert im Intervall [1,4] um die x-Achse und erzeugt somit einen Drehkörper.
Berechne das Volumen dieses Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Den so entstandenen Rotationskörper kann man sich vorstellen als Rotationskörper, der durch Rotation der Fläche unter dem Graph von f entsteht, und aus dem der Rotationskörper, der durch Rotation der Fläche unter dem Graph von g entsteht, herausgefräst wird. Dadurch ergibt sich für solch einen Rotationskörper die Formel:

V = π 1 4 ( 4 x ) 2 x - π 1 4 ( 4 2x +3 ) 2 x

Da die beiden Integrale die gleichen Grenzen haben, kann man auch die beiden Summanden in ein Integral schreiben:

= π 1 4 ( ( 4 x ) 2 - ( 4 2x +3 ) 2 ) x

= π 1 4 ( 16 x 2 - 16 ( 2x +3 ) 2 ) x

= π 1 4 ( - 16 ( 2x +3 ) 2 + 16 x 2 ) x
= π 1 4 ( -16 ( 2x +3 ) -2 +16 x -2 ) x

= π [ 8 ( 2x +3 ) -1 -16 x -1 ] 1 4

= π [ 8 2x +3 - 16 x ] 1 4

= π · ( 8 24 +3 - 16 4 - ( 8 21 +3 - 16 1 ) )

= π · ( 8 8 +3 -16( 1 4 ) - ( 8 2 +3 -161 ) )

= π · ( 8 11 -4 - ( 8 5 -16 ) )

= π · ( 8( 1 11 ) -4 - ( 8( 1 5 ) -16 ) )

= π · ( 8 11 -4 - ( 8 5 -16 ) )

= π · ( 8 11 - 44 11 - ( 8 5 - 80 5 ) )

= π · ( - 36 11 -1 · ( - 72 5 ) )

= π · ( - 36 11 + 72 5 )

= π · 612 55

= 612 55 π


≈ 34,957

Rotationskörper um andere Achse

Beispiel:

Die Fläche zwischen dem Graph von f mit f(x)= 3x +2 und der Geraden y = 2 rotiert im Intervall [0,1] um diese Gerade y = 2 (nicht um die x-Achse).
Berechne das Volumen des entstehenden Drehkörpers.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Die Fläche zwischen dem Graph von f und der Geraden y = 2 (linkes Schaubild) ist die gleiche Fläche wie die zwischen der Differenzfunktion f(x)-2 = 3x +2 -2
und der x-Achse (rechtes Schaubild).

Dementsprechend ist auch der gesuchte Rotationskörper der gleiche, wie wenn man die Fläche unter der Differenzfunktion (rechtes Schaubild) um die x-Achse rotieren lassen würde. Dadurch ergibt sich für das Volumen:

V = π 0 1 ( 3x +2 -2 ) 2 x

= π 0 1 ( 3x ) 2 x
= π 0 1 9 x 2 x

= π [ 3 x 3 ] 0 1

= π · ( 3 1 3 -3 0 3 )

= π · ( 31 -30 )

= π · ( 3 +0 )

= π · 3

= 3π


≈ 9,425