Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -3 ( x -7 ) 2
und
g(x)= -3 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-3 ( x -7 ) 2 = -3 |: ( -3 )
( x -7 ) 2 = 1 | 2

1. Fall

x -7 = - 1 = -1
x -7 = -1 | +7
x1 = 6

2. Fall

x -7 = 1 = 1
x -7 = 1 | +7
x2 = 8

L={ 6 ; 8 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 6 ) = -3

g( 8 ) = -3

Die Schnittpunkte sind also S1( 6 | -3 ) und S2( 8 | -3 ).

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

4x +4 x 2 +2 = 0

Lösung einblenden
4 x 2 +4x +2 = 0 |:2

2 x 2 +2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 2 · 1 22

x1,2 = -2 ± 4 -8 4

x1,2 = -2 ± ( -4 ) 4

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +2x +1 = 0 |: 2

x 2 + x + 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( 1 2 ) = 1 4 - 1 2 = 1 4 - 2 4 = - 1 4

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +16x +65 = 0

Lösung einblenden

x 2 +16x +65 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -16 ± 16 2 -4 · 1 · 65 21

x1,2 = -16 ± 256 -260 2

x1,2 = -16 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 8 2 - 65 = 64 - 65 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +2 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|2).
Es gilt dann ja: y = 2,
also y = a · ( -1 +2 ) · ( -1 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 ( x +2 ) x .