Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

x 2 +0,07 = 0,11

Lösung einblenden
x 2 +0,07 = 0,11 | -0,07
x 2 = 0,04 | 2
x1 = - 0,04 = -0,2
x2 = 0,04 = 0,2

L={ -0,2 ; 0,2 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

2 x 2 -18x = -40

Lösung einblenden
2 x 2 -18x = -40 | +40
2 x 2 -18x +40 = 0 |:2

x 2 -9x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 20 = 81 4 - 20 = 81 4 - 80 4 = 1 4

x1,2 = 9 2 ± 1 4

x1 = 9 2 - 1 2 = 8 2 = 4

x2 = 9 2 + 1 2 = 10 2 = 5

L={ 4 ; 5 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -2x +1 = 0

Lösung einblenden

x 2 -2x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · 1 21

x1,2 = +2 ± 4 -4 2

x1,2 = +2 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - 1 = 1 - 1 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 1 ± 0 = 1

L={ 1 }

1 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|1).
Es gilt dann ja: y = 1,
also y = a · ( -3 +4 ) · ( -3 +2 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +4 ) ( x +2 ) .