Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

-4 x 2 + 52 3 = - 40 9

Lösung einblenden
-4 x 2 + 52 3 = - 40 9 | - 52 3
-4 x 2 = - 196 9 |: ( -4 )
x 2 = 49 9 | 2
x1 = - 49 9 - 7 3
x2 = 49 9 7 3

L={ - 7 3 ; 7 3 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

5 x 2 +25x = 70

Lösung einblenden
5 x 2 +25x = 70 | -70
5 x 2 +25x -70 = 0 |:5

x 2 +5x -14 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · ( -14 ) 21

x1,2 = -5 ± 25 +56 2

x1,2 = -5 ± 81 2

x1 = -5 + 81 2 = -5 +9 2 = 4 2 = 2

x2 = -5 - 81 2 = -5 -9 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -14 ) = 25 4 + 14 = 25 4 + 56 4 = 81 4

x1,2 = - 5 2 ± 81 4

x1 = - 5 2 - 9 2 = - 14 2 = -7

x2 = - 5 2 + 9 2 = 4 2 = 2

L={ -7 ; 2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +14x +48 = 0

Lösung einblenden

x 2 +14x +48 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -14 ± 14 2 -4 · 1 · 48 21

x1,2 = -14 ± 196 -192 2

x1,2 = -14 ± 4 2

x1 = -14 + 4 2 = -14 +2 2 = -12 2 = -6

x2 = -14 - 4 2 = -14 -2 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 7 2 - 48 = 49 - 48 = 1

x1,2 = -7 ± 1

x1 = -7 - 1 = -8

x2 = -7 + 1 = -6

L={ -8 ; -6 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|1).
Es gilt dann ja: y = 1,
also y = a · 1 · ( 1 -2 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - x ( x -2 ) .