Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -7 ) 2 -6
und
g(x)= 10 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -7 ) 2 -6 = 10 | +6
( x -7 ) 2 = 16 | 2

1. Fall

x -7 = - 16 = -4
x -7 = -4 | +7
x1 = 3

2. Fall

x -7 = 16 = 4
x -7 = 4 | +7
x2 = 11

L={ 3 ; 11 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 3 ) = 10

g( 11 ) = 10

Die Schnittpunkte sind also S1( 3 | 10 ) und S2( 11 | 10 ).

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 -18 +7x = 0

Lösung einblenden

x 2 +7x -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -7 ± 7 2 -4 · 1 · ( -18 ) 21

x1,2 = -7 ± 49 +72 2

x1,2 = -7 ± 121 2

x1 = -7 + 121 2 = -7 +11 2 = 4 2 = 2

x2 = -7 - 121 2 = -7 -11 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 7 2 ) 2 - ( -18 ) = 49 4 + 18 = 49 4 + 72 4 = 121 4

x1,2 = - 7 2 ± 121 4

x1 = - 7 2 - 11 2 = - 18 2 = -9

x2 = - 7 2 + 11 2 = 4 2 = 2

L={ -9 ; 2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +10x -48 = 0

Lösung einblenden
2 x 2 +10x -48 = 0 |:2

x 2 +5x -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · ( -24 ) 21

x1,2 = -5 ± 25 +96 2

x1,2 = -5 ± 121 2

x1 = -5 + 121 2 = -5 +11 2 = 6 2 = 3

x2 = -5 - 121 2 = -5 -11 2 = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -24 ) = 25 4 + 24 = 25 4 + 96 4 = 121 4

x1,2 = - 5 2 ± 121 4

x1 = - 5 2 - 11 2 = - 16 2 = -8

x2 = - 5 2 + 11 2 = 6 2 = 3

L={ -8 ; 3 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-2).
Es gilt dann ja: y = -2,
also y = a · ( -2 · ( -2 -2 ) ) = 8a =-2.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 x ( x -2 ) .