Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 16 36

Lösung einblenden
x 2 = 16 36
x 2 = 4 9 | 2
x1 = - 4 9 - 2 3
x2 = 4 9 2 3

L={ - 2 3 ; 2 3 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

4 x 2 - x +8 = ( 3x +5 ) ( x -6 ) +7x +34

Lösung einblenden
4 x 2 - x +8 = ( 3x +5 ) ( x -6 ) +7x +34
4 x 2 - x +8 = 3 x 2 -13x -30 +7x +34
4 x 2 - x +8 = 3 x 2 -6x +4 | -3 x 2 +6x -4

x 2 +5x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · 4 21

x1,2 = -5 ± 25 -16 2

x1,2 = -5 ± 9 2

x1 = -5 + 9 2 = -5 +3 2 = -2 2 = -1

x2 = -5 - 9 2 = -5 -3 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

L={ -4 ; -1 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +12x +16 = 0

Lösung einblenden
2 x 2 +12x +16 = 0 |:2

x 2 +6x +8 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 8 21

x1,2 = -6 ± 36 -32 2

x1,2 = -6 ± 4 2

x1 = -6 + 4 2 = -6 +2 2 = -4 2 = -2

x2 = -6 - 4 2 = -6 -2 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 8 = 9 - 8 = 1

x1,2 = -3 ± 1

x1 = -3 - 1 = -4

x2 = -3 + 1 = -2

L={ -4 ; -2 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +4 ) · ( -3 +1 ) = -2a =-2.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +4 ) ( x +1 ) .