Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

( x +4 ) 2 -15 = 1

Lösung einblenden
( x +4 ) 2 -15 = 1 | +15
( x +4 ) 2 = 16 | 2

1. Fall

x +4 = - 16 = -4
x +4 = -4 | -4
x1 = -8

2. Fall

x +4 = 16 = 4
x +4 = 4 | -4
x2 = 0

L={ -8 ; 0}

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-14x +50 + x 2 = 0

Lösung einblenden

x 2 -14x +50 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +14 ± ( -14 ) 2 -4 · 1 · 50 21

x1,2 = +14 ± 196 -200 2

x1,2 = +14 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -7 ) 2 - 50 = 49 - 50 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -6x -80 = 0

Lösung einblenden
2 x 2 -6x -80 = 0 |:2

x 2 -3x -40 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -40 ) 21

x1,2 = +3 ± 9 +160 2

x1,2 = +3 ± 169 2

x1 = 3 + 169 2 = 3 +13 2 = 16 2 = 8

x2 = 3 - 169 2 = 3 -13 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -40 ) = 9 4 + 40 = 9 4 + 160 4 = 169 4

x1,2 = 3 2 ± 169 4

x1 = 3 2 - 13 2 = - 10 2 = -5

x2 = 3 2 + 13 2 = 16 2 = 8

L={ -5 ; 8 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +4 ) · ( -3 +2 ) = -a =-2.

Hieraus ergibt sich a=2.

Der gesuchte faktorisierte Funktionsterm ist somit y= 2 ( x +4 ) ( x +2 ) .