Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 0,04

Lösung einblenden
x 2 = 0,04 | 2
x1 = - 0,04 = -0,2
x2 = 0,04 = 0,2

L={ -0,2 ; 0,2 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 +10x = -26

Lösung einblenden
x 2 +10x = -26 | +26

x 2 +10x +26 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · 1 · 26 21

x1,2 = -10 ± 100 -104 2

x1,2 = -10 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 5 2 - 26 = 25 - 26 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 +10x -50 = 0

Lösung einblenden
4 x 2 +10x -50 = 0 |:2

2 x 2 +5x -25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 2 · ( -25 ) 22

x1,2 = -5 ± 25 +200 4

x1,2 = -5 ± 225 4

x1 = -5 + 225 4 = -5 +15 4 = 10 4 = 2,5

x2 = -5 - 225 4 = -5 -15 4 = -20 4 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 +5x -25 = 0 |: 2

x 2 + 5 2 x - 25 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 4 ) 2 - ( - 25 2 ) = 25 16 + 25 2 = 25 16 + 200 16 = 225 16

x1,2 = - 5 4 ± 225 16

x1 = - 5 4 - 15 4 = - 20 4 = -5

x2 = - 5 4 + 15 4 = 10 4 = 2.5

L={ -5 ; 2,5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +4 ) · ( -3 +2 ) = -a =-2.

Hieraus ergibt sich a=2.

Der gesuchte faktorisierte Funktionsterm ist somit y= 2 ( x +4 ) ( x +2 ) .