Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

3 x 2 -147 = 0

Lösung einblenden
3 x 2 -147 = 0 | +147
3 x 2 = 147 |:3
x 2 = 49 | 2
x1 = - 49 = -7
x2 = 49 = 7

L={ -7 ; 7 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-32x +65 +4 x 2 = 0

Lösung einblenden

4 x 2 -32x +65 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +32 ± ( -32 ) 2 -4 · 4 · 65 24

x1,2 = +32 ± 1024 -1040 8

x1,2 = +32 ± ( -16 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -32x +65 = 0 |: 4

x 2 -8x + 65 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -4 ) 2 - ( 65 4 ) = 16 - 65 4 = 64 4 - 65 4 = - 1 4

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -11x +14 = 0

Lösung einblenden

2 x 2 -11x +14 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +11 ± ( -11 ) 2 -4 · 2 · 14 22

x1,2 = +11 ± 121 -112 4

x1,2 = +11 ± 9 4

x1 = 11 + 9 4 = 11 +3 4 = 14 4 = 3,5

x2 = 11 - 9 4 = 11 -3 4 = 8 4 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -11x +14 = 0 |: 2

x 2 - 11 2 x +7 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 11 4 ) 2 - 7 = 121 16 - 7 = 121 16 - 112 16 = 9 16

x1,2 = 11 4 ± 9 16

x1 = 11 4 - 3 4 = 8 4 = 2

x2 = 11 4 + 3 4 = 14 4 = 3.5

L={ 2 ; 3,5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-2).
Es gilt dann ja: y = -2,
also y = a · ( -2 · ( -2 -2 ) ) = 8a =-2.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 x ( x -2 ) .