Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

4 x 2 = 4

Lösung einblenden
4 x 2 = 4 |:4
x 2 = 1 | 2
x1 = - 1 = -1
x2 = 1 = 1

L={ -1 ; 1 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 +16 = -8x

Lösung einblenden
x 2 +16 = -8x | +8x

x 2 +8x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -4 ± 0 = -4

L={ -4 }

-4 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +8x -24 = 0

Lösung einblenden
2 x 2 +8x -24 = 0 |:2

x 2 +4x -12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · ( -12 ) 21

x1,2 = -4 ± 16 +48 2

x1,2 = -4 ± 64 2

x1 = -4 + 64 2 = -4 +8 2 = 4 2 = 2

x2 = -4 - 64 2 = -4 -8 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - ( -12 ) = 4+ 12 = 16

x1,2 = -2 ± 16

x1 = -2 - 4 = -6

x2 = -2 + 4 = 2

L={ -6 ; 2 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 -1 ) · ( 0 -4 ) = 4a =-1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 ( x -1 ) ( x -4 ) .