Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

( x -4 ) 2 -17 = -8

Lösung einblenden
( x -4 ) 2 -17 = -8 | +17
( x -4 ) 2 = 9 | 2

1. Fall

x -4 = - 9 = -3
x -4 = -3 | +4
x1 = 1

2. Fall

x -4 = 9 = 3
x -4 = 3 | +4
x2 = 7

L={ 1 ; 7 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

5 x 2 -9x -8 = ( 4x -3 ) ( x +2 ) -13x +4

Lösung einblenden
5 x 2 -9x -8 = ( 4x -3 ) ( x +2 ) -13x +4
5 x 2 -9x -8 = 4 x 2 +5x -6 -13x +4
5 x 2 -9x -8 = 4 x 2 -8x -2 | -4 x 2 +8x +2

x 2 - x -6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +1 ± 1 +24 2

x1,2 = +1 ± 25 2

x1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

x2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -6 ) = 1 4 + 6 = 1 4 + 24 4 = 25 4

x1,2 = 1 2 ± 25 4

x1 = 1 2 - 5 2 = - 4 2 = -2

x2 = 1 2 + 5 2 = 6 2 = 3

L={ -2 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +3x -18 = 0

Lösung einblenden

x 2 +3x -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -3 ± 3 2 -4 · 1 · ( -18 ) 21

x1,2 = -3 ± 9 +72 2

x1,2 = -3 ± 81 2

x1 = -3 + 81 2 = -3 +9 2 = 6 2 = 3

x2 = -3 - 81 2 = -3 -9 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -18 ) = 9 4 + 18 = 9 4 + 72 4 = 81 4

x1,2 = - 3 2 ± 81 4

x1 = - 3 2 - 9 2 = - 12 2 = -6

x2 = - 3 2 + 9 2 = 6 2 = 3

L={ -6 ; 3 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(5|0).

Also muss der Funktionsterm y= a · x · ( x -5 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-2).
Es gilt dann ja: y = -2,
also y = a · ( -1 · ( -1 -5 ) ) = 6a =-2.

Hieraus ergibt sich a= - 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 3 x ( x -5 ) .