Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

-2 ( x +5 ) 2 +2 = 0

Lösung einblenden
-2 ( x +5 ) 2 +2 = 0 | -2
-2 ( x +5 ) 2 = -2 |: ( -2 )
( x +5 ) 2 = 1 | 2

1. Fall

x +5 = - 1 = -1
x +5 = -1 | -5
x1 = -6

2. Fall

x +5 = 1 = 1
x +5 = 1 | -5
x2 = -4

L={ -6 ; -4 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 +8x +12 = 0

Lösung einblenden

x 2 +8x +12 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 12 21

x1,2 = -8 ± 64 -48 2

x1,2 = -8 ± 16 2

x1 = -8 + 16 2 = -8 +4 2 = -4 2 = -2

x2 = -8 - 16 2 = -8 -4 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 12 = 16 - 12 = 4

x1,2 = -4 ± 4

x1 = -4 - 2 = -6

x2 = -4 + 2 = -2

L={ -6 ; -2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -12x +35 = 0

Lösung einblenden

x 2 -12x +35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +12 ± ( -12 ) 2 -4 · 1 · 35 21

x1,2 = +12 ± 144 -140 2

x1,2 = +12 ± 4 2

x1 = 12 + 4 2 = 12 +2 2 = 14 2 = 7

x2 = 12 - 4 2 = 12 -2 2 = 10 2 = 5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -6 ) 2 - 35 = 36 - 35 = 1

x1,2 = 6 ± 1

x1 = 6 - 1 = 5

x2 = 6 + 1 = 7

L={ 5 ; 7 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +2 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-1).
Es gilt dann ja: y = -1,
also y = a · ( -1 +2 ) · ( -1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +2 ) x .