Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 225 196

Lösung einblenden
x 2 = 225 196 | 2
x1 = - 225 196 - 15 14
x2 = 225 196 15 14

L={ - 15 14 ; 15 14 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-5 x 2 -8x -4 = ( -6x -8 ) ( x +4 ) +16x +12

Lösung einblenden
-5 x 2 -8x -4 = ( -6x -8 ) ( x +4 ) +16x +12
-5 x 2 -8x -4 = -6 x 2 -32x -32 +16x +12
-5 x 2 -8x -4 = -6 x 2 -16x -20 | +6 x 2 +16x +20

x 2 +8x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -4 ± 0 = -4

L={ -4 }

-4 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 -36x +81 = 0

Lösung einblenden

4 x 2 -36x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +36 ± ( -36 ) 2 -4 · 4 · 81 24

x1,2 = +36 ± 1296 -1296 8

x1,2 = +36 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 36 8 = 9 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -36x +81 = 0 |: 4

x 2 -9x + 81 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - ( 81 4 ) = 81 4 - 81 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 9 2 ± 0 = 9 2

L={ 9 2 }

9 2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 +1 ) · ( 0 -1 ) = -a =-1.

Hieraus ergibt sich a=1.

Der gesuchte faktorisierte Funktionsterm ist somit y= ( x +1 ) ( x -1 ) .