Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= ( x -7 ) 2 +4
und
g(x)= 8 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

( x -7 ) 2 +4 = 8 | -4
( x -7 ) 2 = 4 | 2

1. Fall

x -7 = - 4 = -2
x -7 = -2 | +7
x1 = 5

2. Fall

x -7 = 4 = 2
x -7 = 2 | +7
x2 = 9

L={ 5 ; 9 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( 5 ) = 8

g( 9 ) = 8

Die Schnittpunkte sind also S1( 5 | 8 ) und S2( 9 | 8 ).

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

6 x 2 +3x -5 = ( 5x +9 ) ( x +6 ) -31x -65

Lösung einblenden
6 x 2 +3x -5 = ( 5x +9 ) ( x +6 ) -31x -65
6 x 2 +3x -5 = 5 x 2 +39x +54 -31x -65
6 x 2 +3x -5 = 5 x 2 +8x -11 | -5 x 2 -8x +11

x 2 -5x +6 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · 1 · 6 21

x1,2 = +5 ± 25 -24 2

x1,2 = +5 ± 1 2

x1 = 5 + 1 2 = 5 +1 2 = 6 2 = 3

x2 = 5 - 1 2 = 5 -1 2 = 4 2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 5 2 ) 2 - 6 = 25 4 - 6 = 25 4 - 24 4 = 1 4

x1,2 = 5 2 ± 1 4

x1 = 5 2 - 1 2 = 4 2 = 2

x2 = 5 2 + 1 2 = 6 2 = 3

L={ 2 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

5 x 2 +8x -21 = 0

Lösung einblenden

5 x 2 +8x -21 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 5 · ( -21 ) 25

x1,2 = -8 ± 64 +420 10

x1,2 = -8 ± 484 10

x1 = -8 + 484 10 = -8 +22 10 = 14 10 = 1,4

x2 = -8 - 484 10 = -8 -22 10 = -30 10 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 +8x -21 = 0 |: 5

x 2 + 8 5 x - 21 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 4 5 ) 2 - ( - 21 5 ) = 16 25 + 21 5 = 16 25 + 105 25 = 121 25

x1,2 = - 4 5 ± 121 25

x1 = - 4 5 - 11 5 = - 15 5 = -3

x2 = - 4 5 + 11 5 = 7 5 = 1.4

L={ -3 ; 1,4 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-3|-2).
Es gilt dann ja: y = -2,
also y = a · ( -3 +1 ) · ( -3 -1 ) = 8a =-2.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 ( x +1 ) ( x -1 ) .