Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

4 x 2 = 256

Lösung einblenden
4 x 2 = 256 |:4
x 2 = 64 | 2
x1 = - 64 = -8
x2 = 64 = 8

L={ -8 ; 8 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 +8x +16 = 0

Lösung einblenden

x 2 +8x +16 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -8 ± 8 2 -4 · 1 · 16 21

x1,2 = -8 ± 64 -64 2

x1,2 = -8 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 4 2 - 16 = 16 - 16 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -4 ± 0 = -4

L={ -4 }

-4 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

16 x 2 +72x +82 = 0

Lösung einblenden
16 x 2 +72x +82 = 0 |:2

8 x 2 +36x +41 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -36 ± 36 2 -4 · 8 · 41 28

x1,2 = -36 ± 1296 -1312 16

x1,2 = -36 ± ( -16 ) 16

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "8 " teilen:

8 x 2 +36x +41 = 0 |: 8

x 2 + 9 2 x + 41 8 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 9 4 ) 2 - ( 41 8 ) = 81 16 - 41 8 = 81 16 - 82 16 = - 1 16

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(5|0).

Also muss der Funktionsterm y= a · x · ( x -5 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|2).
Es gilt dann ja: y = 2,
also y = a · 1 · ( 1 -5 ) = -4a =2.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 x ( x -5 ) .