Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

-3 x 2 = -48

Lösung einblenden
-3 x 2 = -48 |: ( -3 )
x 2 = 16 | 2
x1 = - 16 = -4
x2 = 16 = 4

L={ -4 ; 4 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -2x +2 = ( -4x +5 ) ( x -3 ) -22x +17

Lösung einblenden
-3 x 2 -2x +2 = ( -4x +5 ) ( x -3 ) -22x +17
-3 x 2 -2x +2 = -4 x 2 +17x -15 -22x +17
-3 x 2 -2x +2 = -4 x 2 -5x +2 | -2
-3 x 2 -2x = -4 x 2 -5x | - ( -4 x 2 -5x )
-3 x 2 +4 x 2 -2x +5x = 0
x 2 +3x = 0
x ( x +3 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +3 = 0 | -3
x2 = -3

L={ -3 ; 0}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -4x -5 = 0

Lösung einblenden

x 2 -4x -5 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +4 ± ( -4 ) 2 -4 · 1 · ( -5 ) 21

x1,2 = +4 ± 16 +20 2

x1,2 = +4 ± 36 2

x1 = 4 + 36 2 = 4 +6 2 = 10 2 = 5

x2 = 4 - 36 2 = 4 -6 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -2 ) 2 - ( -5 ) = 4+ 5 = 9

x1,2 = 2 ± 9

x1 = 2 - 3 = -1

x2 = 2 + 3 = 5

L={ -1 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +1 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-1).
Es gilt dann ja: y = -1,
also y = a · ( -2 +1 ) · ( -2 ) = 2a =-1.

Hieraus ergibt sich a= - 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 2 ( x +1 ) x .