Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x + 5 3 ) 2 = 1 9

Lösung einblenden
( x + 5 3 ) 2 = 1 9 | 2

1. Fall

x + 5 3 = - 1 9 - 1 3
x + 5 3 = - 1 3 | - 5 3
x1 = -2

2. Fall

x + 5 3 = 1 9 1 3
x + 5 3 = 1 3 | - 5 3
x2 = - 4 3

L={ -2 ; - 4 3 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 -2x -35 = 0

Lösung einblenden

x 2 -2x -35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -35 ) 21

x1,2 = +2 ± 4 +140 2

x1,2 = +2 ± 144 2

x1 = 2 + 144 2 = 2 +12 2 = 14 2 = 7

x2 = 2 - 144 2 = 2 -12 2 = -10 2 = -5

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -35 ) = 1+ 35 = 36

x1,2 = 1 ± 36

x1 = 1 - 6 = -5

x2 = 1 + 6 = 7

L={ -5 ; 7 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +10x +26 = 0

Lösung einblenden

x 2 +10x +26 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -10 ± 10 2 -4 · 1 · 26 21

x1,2 = -10 ± 100 -104 2

x1,2 = -10 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 5 2 - 26 = 25 - 26 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(3|0).

Also muss der Funktionsterm y= a · x · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-1).
Es gilt dann ja: y = -1,
also y = a · ( -1 · ( -1 -3 ) ) = 4a =-1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 x ( x -3 ) .