Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm als Graph

Beispiel:

Berechne die Schnittpunkte der Schaubilder von f und g mit
f(x)= -2 ( x +1 ) 2 -6
und
g(x)= -56 .

Lösung einblenden

Um die Schnittpunkte zu berechnen muss man einfach die beiden Funktionen gleichsetzen, also

f(x)=g(x)

-2 ( x +1 ) 2 -6 = -56 | +6
-2 ( x +1 ) 2 = -50 |: ( -2 )
( x +1 ) 2 = 25 | 2

1. Fall

x +1 = - 25 = -5
x +1 = -5 | -1
x1 = -6

2. Fall

x +1 = 25 = 5
x +1 = 5 | -1
x2 = 4

L={ -6 ; 4 }

Um die y-Werte der Schnittpunkte zu erhalten, setzt man die x-Werte in eine der beiden (oder zur Probe in beide) Funktionen ein:

g( -6 ) = -56

g( 4 ) = -56

Die Schnittpunkte sind also S1( -6 | -56 ) und S2( 4 | -56 ).

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 +6x +10 = 0

Lösung einblenden

x 2 +6x +10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -6 ± 6 2 -4 · 1 · 10 21

x1,2 = -6 ± 36 -40 2

x1,2 = -6 ± ( -4 ) 2

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - 10 = 9 - 10 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 -14x -30 = 0

Lösung einblenden
4 x 2 -14x -30 = 0 |:2

2 x 2 -7x -15 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +7 ± ( -7 ) 2 -4 · 2 · ( -15 ) 22

x1,2 = +7 ± 49 +120 4

x1,2 = +7 ± 169 4

x1 = 7 + 169 4 = 7 +13 4 = 20 4 = 5

x2 = 7 - 169 4 = 7 -13 4 = -6 4 = -1,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -7x -15 = 0 |: 2

x 2 - 7 2 x - 15 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 7 4 ) 2 - ( - 15 2 ) = 49 16 + 15 2 = 49 16 + 120 16 = 169 16

x1,2 = 7 4 ± 169 16

x1 = 7 4 - 13 4 = - 6 4 = -1.5

x2 = 7 4 + 13 4 = 20 4 = 5

L={ -1,5 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|-2).
Es gilt dann ja: y = -2,
also y = a · ( -2 +3 ) · ( -2 +1 ) = -a =-2.

Hieraus ergibt sich a=2.

Der gesuchte faktorisierte Funktionsterm ist somit y= 2 ( x +3 ) ( x +1 ) .