Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

3 ( x -3 ) 2 -12 = 0

Lösung einblenden
3 ( x -3 ) 2 -12 = 0 | +12
3 ( x -3 ) 2 = 12 |:3
( x -3 ) 2 = 4 | 2

1. Fall

x -3 = - 4 = -2
x -3 = -2 | +3
x1 = 1

2. Fall

x -3 = 4 = 2
x -3 = 2 | +3
x2 = 5

L={ 1 ; 5 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

2 x 2 -40x +200 = 0

Lösung einblenden
2 x 2 -40x +200 = 0 |:2

x 2 -20x +100 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +20 ± ( -20 ) 2 -4 · 1 · 100 21

x1,2 = +20 ± 400 -400 2

x1,2 = +20 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 20 2 = 10

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -10 ) 2 - 100 = 100 - 100 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 10 ± 0 = 10

L={ 10 }

10 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 +4x +1 = 0

Lösung einblenden

4 x 2 +4x +1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 4 · 1 24

x1,2 = -4 ± 16 -16 8

x1,2 = -4 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 8 = - 1 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +4x +1 = 0 |: 4

x 2 + x + 1 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 1 2 ) 2 - ( 1 4 ) = 1 4 - 1 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = - 1 2 ± 0 = - 1 2

L={ - 1 2 }

- 1 2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(2|0).

Also muss der Funktionsterm y= a · x · ( x -2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(1|2).
Es gilt dann ja: y = 2,
also y = a · 1 · ( 1 -2 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 x ( x -2 ) .