Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 64

Lösung einblenden
x 2 = 64 | 2
x1 = - 64 = -8
x2 = 64 = 8

L={ -8 ; 8 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

- x 2 +6x +4 = ( -2x +8 ) ( x +7 ) +15x -54

Lösung einblenden
- x 2 +6x +4 = ( -2x +8 ) ( x +7 ) +15x -54
- x 2 +6x +4 = -2 x 2 -6x +56 +15x -54
- x 2 +6x +4 = -2 x 2 +9x +2 | +2 x 2 -9x -2

x 2 -3x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

L={ 1 ; 2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

5 x 2 -6x -27 = 0

Lösung einblenden

5 x 2 -6x -27 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +6 ± ( -6 ) 2 -4 · 5 · ( -27 ) 25

x1,2 = +6 ± 36 +540 10

x1,2 = +6 ± 576 10

x1 = 6 + 576 10 = 6 +24 10 = 30 10 = 3

x2 = 6 - 576 10 = 6 -24 10 = -18 10 = -1,8

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "5 " teilen:

5 x 2 -6x -27 = 0 |: 5

x 2 - 6 5 x - 27 5 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 5 ) 2 - ( - 27 5 ) = 9 25 + 27 5 = 9 25 + 135 25 = 144 25

x1,2 = 3 5 ± 144 25

x1 = 3 5 - 12 5 = - 9 5 = -1.8

x2 = 3 5 + 12 5 = 15 5 = 3

L={ -1,8 ; 3 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-1|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-2|2).
Es gilt dann ja: y = 2,
also y = a · ( -2 +3 ) · ( -2 +1 ) = -a =2.

Hieraus ergibt sich a=-2.

Der gesuchte faktorisierte Funktionsterm ist somit y= -2 ( x +3 ) ( x +1 ) .