Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x - 1 3 ) 2 = 1 81

Lösung einblenden
( x - 1 3 ) 2 = 1 81 | 2

1. Fall

x - 1 3 = - 1 81 - 1 9
x - 1 3 = - 1 9 | + 1 3
x1 = 2 9

2. Fall

x - 1 3 = 1 81 1 9
x - 1 3 = 1 9 | + 1 3
x2 = 4 9

L={ 2 9 ; 4 9 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 -9x + 81 4 = 0

Lösung einblenden
x 2 -9x + 81 4 = 0 |⋅ 4
4( x 2 -9x + 81 4 ) = 0

4 x 2 -36x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +36 ± ( -36 ) 2 -4 · 4 · 81 24

x1,2 = +36 ± 1296 -1296 8

x1,2 = +36 ± 0 8

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = 36 8 = 9 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 -36x +81 = 0 |: 4

x 2 -9x + 81 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - ( 81 4 ) = 81 4 - 81 4 = 0 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = 9 2 ± 0 = 9 2

L={ 9 2 }

9 2 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 +4x -6 = 0

Lösung einblenden
2 x 2 +4x -6 = 0 |:2

x 2 +2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -2 ± 2 2 -4 · 1 · ( -3 ) 21

x1,2 = -2 ± 4 +12 2

x1,2 = -2 ± 16 2

x1 = -2 + 16 2 = -2 +4 2 = 2 2 = 1

x2 = -2 - 16 2 = -2 -4 2 = -6 2 = -3

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 1 2 - ( -3 ) = 1+ 3 = 4

x1,2 = -1 ± 4

x1 = -1 - 2 = -3

x2 = -1 + 2 = 1

L={ -3 ; 1 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x +1 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-2).
Es gilt dann ja: y = -2,
also y = a · ( 0 +1 ) · ( 0 -4 ) = -4a =-2.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +1 ) ( x -4 ) .