Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

3 x 2 = 108

Lösung einblenden
3 x 2 = 108 |:3
x 2 = 36 | 2
x1 = - 36 = -6
x2 = 36 = 6

L={ -6 ; 6 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

7 x 2 -8x +1 = ( 6x +1 ) ( x +3 ) -18x -22

Lösung einblenden
7 x 2 -8x +1 = ( 6x +1 ) ( x +3 ) -18x -22
7 x 2 -8x +1 = 6 x 2 +19x +3 -18x -22
7 x 2 -8x +1 = 6 x 2 + x -19 | -6 x 2 - x +19

x 2 -9x +20 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +9 ± ( -9 ) 2 -4 · 1 · 20 21

x1,2 = +9 ± 81 -80 2

x1,2 = +9 ± 1 2

x1 = 9 + 1 2 = 9 +1 2 = 10 2 = 5

x2 = 9 - 1 2 = 9 -1 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 9 2 ) 2 - 20 = 81 4 - 20 = 81 4 - 80 4 = 1 4

x1,2 = 9 2 ± 1 4

x1 = 9 2 - 1 2 = 8 2 = 4

x2 = 9 2 + 1 2 = 10 2 = 5

L={ 4 ; 5 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +12x +35 = 0

Lösung einblenden

x 2 +12x +35 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -12 ± 12 2 -4 · 1 · 35 21

x1,2 = -12 ± 144 -140 2

x1,2 = -12 ± 4 2

x1 = -12 + 4 2 = -12 +2 2 = -10 2 = -5

x2 = -12 - 4 2 = -12 -2 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 6 2 - 35 = 36 - 35 = 1

x1,2 = -6 ± 1

x1 = -6 - 1 = -7

x2 = -6 + 1 = -5

L={ -7 ; -5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 -1 ) · ( 0 -4 ) = 4a =-1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 ( x -1 ) ( x -4 ) .