Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm mit Umformungen

Beispiel:

Löse die folgende Gleichung:

2 ( x +5 ) 2 -18 = 0

Lösung einblenden
2 ( x +5 ) 2 -18 = 0 | +18
2 ( x +5 ) 2 = 18 |:2
( x +5 ) 2 = 9 | 2

1. Fall

x +5 = - 9 = -3
x +5 = -3 | -5
x1 = -8

2. Fall

x +5 = 9 = 3
x +5 = 3 | -5
x2 = -2

L={ -8 ; -2 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-5 x 2 +5x +9 = ( -6x -9 ) ( x -4 ) -7x -29

Lösung einblenden
-5 x 2 +5x +9 = ( -6x -9 ) ( x -4 ) -7x -29
-5 x 2 +5x +9 = -6 x 2 +15x +36 -7x -29
-5 x 2 +5x +9 = -6 x 2 +8x +7 | +6 x 2 -8x -7

x 2 -3x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · 2 21

x1,2 = +3 ± 9 -8 2

x1,2 = +3 ± 1 2

x1 = 3 + 1 2 = 3 +1 2 = 4 2 = 2

x2 = 3 - 1 2 = 3 -1 2 = 2 2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - 2 = 9 4 - 2 = 9 4 - 8 4 = 1 4

x1,2 = 3 2 ± 1 4

x1 = 3 2 - 1 2 = 2 2 = 1

x2 = 3 2 + 1 2 = 4 2 = 2

L={ 1 ; 2 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 -13x +36 = 0

Lösung einblenden

x 2 -13x +36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +13 ± ( -13 ) 2 -4 · 1 · 36 21

x1,2 = +13 ± 169 -144 2

x1,2 = +13 ± 25 2

x1 = 13 + 25 2 = 13 +5 2 = 18 2 = 9

x2 = 13 - 25 2 = 13 -5 2 = 8 2 = 4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 13 2 ) 2 - 36 = 169 4 - 36 = 169 4 - 144 4 = 25 4

x1,2 = 13 2 ± 25 4

x1 = 13 2 - 5 2 = 8 2 = 4

x2 = 13 2 + 5 2 = 18 2 = 9

L={ 4 ; 9 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(1|0) und N2(4|0).

Also muss der Funktionsterm y= a · ( x -1 ) · ( x -4 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(0|-1).
Es gilt dann ja: y = -1,
also y = a · ( 0 -1 ) · ( 0 -4 ) = 4a =-1.

Hieraus ergibt sich a= - 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= - 1 4 ( x -1 ) ( x -4 ) .