Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch

Beispiel:

Löse die folgende Gleichung:

x 2 = 19600

Lösung einblenden
x 2 = 19600 | 2
x1 = - 19600 = -140
x2 = 19600 = 140

L={ -140 ; 140 }

a-b-c-Formel (MNF) - mit vereinfachen

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -6x +3 = ( -4x -4 ) ( x -3 ) -11x +1

Lösung einblenden
-3 x 2 -6x +3 = ( -4x -4 ) ( x -3 ) -11x +1
-3 x 2 -6x +3 = -4 x 2 +8x +12 -11x +1
-3 x 2 -6x +3 = -4 x 2 -3x +13 | +4 x 2 +3x -13

x 2 -3x -10 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · 1 · ( -10 ) 21

x1,2 = +3 ± 9 +40 2

x1,2 = +3 ± 49 2

x1 = 3 + 49 2 = 3 +7 2 = 10 2 = 5

x2 = 3 - 49 2 = 3 -7 2 = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 3 2 ) 2 - ( -10 ) = 9 4 + 10 = 9 4 + 40 4 = 49 4

x1,2 = 3 2 ± 49 4

x1 = 3 2 - 7 2 = - 4 2 = -2

x2 = 3 2 + 7 2 = 10 2 = 5

L={ -2 ; 5 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

2 x 2 -8 = 0

Lösung einblenden
2 x 2 -8 = 0 | +8
2 x 2 = 8 |:2
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

L={ -2 ; 2 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(0|0).

Also muss der Funktionsterm y= a · ( x +2 ) · x sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|1).
Es gilt dann ja: y = 1,
also y = a · ( -1 +2 ) · ( -1 ) = -a =1.

Hieraus ergibt sich a=-1.

Der gesuchte faktorisierte Funktionsterm ist somit y= - ( x +2 ) x .