Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)II

Beispiel:

Löse die folgende Gleichung:

-3 x 2 -3 = - 10 3

Lösung einblenden
-3 x 2 -3 = - 10 3 | +3
-3 x 2 = - 1 3 |: ( -3 )
x 2 = 1 9 | 2
x1 = - 1 9 - 1 3
x2 = 1 9 1 3

L={ - 1 3 ; 1 3 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

-6 +2 x 2 = 4x

Lösung einblenden
2 x 2 -6 = 4x | -4x
2 x 2 -4x -6 = 0 |:2

x 2 -2x -3 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -3 ) 21

x1,2 = +2 ± 4 +12 2

x1,2 = +2 ± 16 2

x1 = 2 + 16 2 = 2 +4 2 = 6 2 = 3

x2 = 2 - 16 2 = 2 -4 2 = -2 2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -3 ) = 1+ 3 = 4

x1,2 = 1 ± 4

x1 = 1 - 2 = -1

x2 = 1 + 2 = 3

L={ -1 ; 3 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +13x +36 = 0

Lösung einblenden

x 2 +13x +36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -13 ± 13 2 -4 · 1 · 36 21

x1,2 = -13 ± 169 -144 2

x1,2 = -13 ± 25 2

x1 = -13 + 25 2 = -13 +5 2 = -8 2 = -4

x2 = -13 - 25 2 = -13 -5 2 = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 13 2 ) 2 - 36 = 169 4 - 36 = 169 4 - 144 4 = 25 4

x1,2 = - 13 2 ± 25 4

x1 = - 13 2 - 5 2 = - 18 2 = -9

x2 = - 13 2 + 5 2 = - 8 2 = -4

L={ -9 ; -4 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-2|0) und N2(3|0).

Also muss der Funktionsterm y= a · ( x +2 ) · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|-2).
Es gilt dann ja: y = -2,
also y = a · ( -1 +2 ) · ( -1 -3 ) = -4a =-2.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +2 ) ( x -3 ) .