Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


quadr. Linearterm

Beispiel:

Löse die folgende Gleichung:

( x + 5 4 ) 2 = 1 16

Lösung einblenden
( x + 5 4 ) 2 = 1 16 | 2

1. Fall

x + 5 4 = - 1 16 = - 1 4
x + 5 4 = - 1 4 | - 5 4
x1 = - 3 2 = -1.5

2. Fall

x + 5 4 = 1 16 = 1 4
x + 5 4 = 1 4 | - 5 4
x2 = -1

L={ - 3 2 ; -1 }

a-b-c-Formel (MNF) - erst sortieren

Beispiel:

Löse die folgende Gleichung:

x 2 -17x = -70

Lösung einblenden
x 2 -17x = -70 | +70

x 2 -17x +70 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +17 ± ( -17 ) 2 -4 · 1 · 70 21

x1,2 = +17 ± 289 -280 2

x1,2 = +17 ± 9 2

x1 = 17 + 9 2 = 17 +3 2 = 20 2 = 10

x2 = 17 - 9 2 = 17 -3 2 = 14 2 = 7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 17 2 ) 2 - 70 = 289 4 - 70 = 289 4 - 280 4 = 9 4

x1,2 = 17 2 ± 9 4

x1 = 17 2 - 3 2 = 14 2 = 7

x2 = 17 2 + 3 2 = 20 2 = 10

L={ 7 ; 10 }

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 +16x +16 = 0

Lösung einblenden
4 x 2 +16x +16 = 0 |:4

x 2 +4x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -4 ± 4 2 -4 · 1 · 4 21

x1,2 = -4 ± 16 -16 2

x1,2 = -4 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -4 2 = -2

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 2 2 - 4 = 4 - 4 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -2 ± 0 = -2

L={ -2 }

-2 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(0|0) und N2(3|0).

Also muss der Funktionsterm y= a · x · ( x -3 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-1|1).
Es gilt dann ja: y = 1,
also y = a · ( -1 · ( -1 -3 ) ) = 4a =1.

Hieraus ergibt sich a= 1 4 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 4 x ( x -3 ) .