Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

5 x 2 = 320

Lösung einblenden
5 x 2 = 320 |:5
x 2 = 64 | 2
x1 = - 64 = -8
x2 = 64 = 8

L={ -8 ; 8 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

x 2 +5x + 29 4 = 0

Lösung einblenden
x 2 +5x + 29 4 = 0 |⋅ 4
4( x 2 +5x + 29 4 ) = 0

4 x 2 +20x +29 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -20 ± 20 2 -4 · 4 · 29 24

x1,2 = -20 ± 400 -464 8

x1,2 = -20 ± ( -64 ) 8

Da die Diskriminante (Zahl unter der Wurzel) negativ ist, hat die quadratische Gleichung keine Lösung!

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "4 " teilen:

4 x 2 +20x +29 = 0 |: 4

x 2 +5x + 29 4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( 29 4 ) = 25 4 - 29 4 = - 4 4 = -1

Da die Diskriminante D < 0 ist, hat die quadratische Gleichung keine Lösunng.

L={}

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

4 x 2 -30x +50 = 0

Lösung einblenden
4 x 2 -30x +50 = 0 |:2

2 x 2 -15x +25 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +15 ± ( -15 ) 2 -4 · 2 · 25 22

x1,2 = +15 ± 225 -200 4

x1,2 = +15 ± 25 4

x1 = 15 + 25 4 = 15 +5 4 = 20 4 = 5

x2 = 15 - 25 4 = 15 -5 4 = 10 4 = 2,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 x 2 -15x +25 = 0 |: 2

x 2 - 15 2 x + 25 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 15 4 ) 2 - ( 25 2 ) = 225 16 - 25 2 = 225 16 - 200 16 = 25 16

x1,2 = 15 4 ± 25 16

x1 = 15 4 - 5 4 = 10 4 = 2.5

x2 = 15 4 + 5 4 = 20 4 = 5

L={ 2,5 ; 5 }

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-4|0) und N2(1|0).

Also muss der Funktionsterm y= a · ( x +4 ) · ( x -1 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-5|2).
Es gilt dann ja: y = 2,
also y = a · ( -5 +4 ) · ( -5 -1 ) = 6a =2.

Hieraus ergibt sich a= 1 3 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 3 ( x +4 ) ( x -1 ) .