Aufgabenbeispiele von quadratische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


reinquadratisch (+ Umformungen)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 +8 = 0

Lösung einblenden
-2 x 2 +8 = 0 | -8
-2 x 2 = -8 |: ( -2 )
x 2 = 4 | 2
x1 = - 4 = -2
x2 = 4 = 2

L={ -2 ; 2 }

a-b-c-Formel (MNF) - mit Durchmult.

Beispiel:

Löse die folgende Gleichung:

2 x 2 +36x +162 = 0

Lösung einblenden
2 x 2 +36x +162 = 0 |:2

x 2 +18x +81 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -18 ± 18 2 -4 · 1 · 81 21

x1,2 = -18 ± 324 -324 2

x1,2 = -18 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -18 2 = -9

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 9 2 - 81 = 81 - 81 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -9 ± 0 = -9

L={ -9 }

-9 ist 2-fache Lösung!

a-b-c-Formel (MNF) - alles links

Beispiel:

Löse die folgende Gleichung:

x 2 +16x +64 = 0

Lösung einblenden

x 2 +16x +64 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -16 ± 16 2 -4 · 1 · 64 21

x1,2 = -16 ± 256 -256 2

x1,2 = -16 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -16 2 = -8

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 8 2 - 64 = 64 - 64 = 0

Da die Diskriminante D = 0 ist, hat die quadratische Gleichung nur eine Lösunng.

x = -8 ± 0 = -8

L={ -8 }

-8 ist 2-fache Lösung!

Linearfaktordarst. am Graph (a≠1)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist eine Parabel, die nicht unbedingt eine Normalparabel sein muss. Bestimme einen Funktionsterm in faktorisierter Darstellung.

Lösung einblenden

Zuerst lesen wir die beiden Schnittpunkte mit der x-Achse ab: N1(-3|0) und N2(-2|0).

Also muss der Funktionsterm y= a · ( x +3 ) · ( x +2 ) sein.

Um dieses a zu bestimmen, suchen wir uns am besten einen Punkt auf dem Graph aus, bei dem sowohl der x-Wert als auch der y-Wert ganzzahlig sind (also ein Punkt auf dem Graph, der genau durch ein 'Kästchenkreuz' geht), in diesem Fall z.B. P(-4|1).
Es gilt dann ja: y = 1,
also y = a · ( -4 +3 ) · ( -4 +2 ) = 2a =1.

Hieraus ergibt sich a= 1 2 .

Der gesuchte faktorisierte Funktionsterm ist somit y= 1 2 ( x +3 ) ( x +2 ) .