Aufgabenbeispiele von durch Faktorisieren

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullprodukt (mit Vereinfachen)

Beispiel:

Löse die folgende Gleichung:

-2 x 2 -2 = 5x -2

Lösung einblenden
-2 x 2 -2 = 5x -2 | +2
-2 x 2 = 5x | -5x
-2 x 2 -5x = 0
- x ( 2x +5 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x +5 = 0 | -5
2x = -5 |:2
x2 = - 5 2 = -2.5

L={ - 5 2 ; 0}

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - sin( x ) = 0

Lösung einblenden
( sin( x ) ) 2 - sin( x ) = 0
( sin( x ) -1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x3 = π

L={0; 1 2 π ; π }