Aufgabenbeispiele von MiAnKa

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


37 Wurzelterme vereinfachen

Beispiel:

Vereinfache den folgenden Term: ( x 4 ) 3 · ( x ) 3 ( x 4 ) 5

Dabei darf im Ergebnis nur noch eine Hochzahl stehen!

Lösung einblenden

( x 4 ) 3 · ( x ) 3 ( x 4 ) 5

Wir schreiben zuerst die Wurzelterme in Potenzterme mit rationalen Hochzahlen um:

= x 3 4 · x 3 2 x 5 4

= x 3 4 + 3 2 x 5 4

= x 9 4 x 5 4

= x 9 4 - 5 4

= x

42 Bruchgleichungen

Beispiel:

Löse die folgende Gleichung:

x x -7 - 2 x +7 = 118 x 2 -49

Lösung einblenden

D=R\{ -7 ; 7 }

x x -7 - 2 x +7 = 118 ( x +7 ) ( x -7 ) |(Nenner faktorisiert)

Wir multiplizieren den Nenner ( x +7 ) ( x -7 ) weg!

x x -7 - 2 x +7 = 118 ( x +7 ) ( x -7 ) |⋅( ( x +7 ) ( x -7 ) )
x x -7 · ( x +7 ) ( x -7 ) - 2 x +7 · ( x +7 ) ( x -7 ) = 118 ( x +7 ) ( x -7 ) · ( x +7 ) ( x -7 )
x ( x +7 ) -2x +14 = 118 x +7 x +7
x ( x +7 ) -2x +14 = 118
x 2 +7x -2x +14 = 118
x 2 +5x +14 = 118
x 2 +5x +14 = 118 | -118

x 2 +5x -104 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -5 ± 5 2 -4 · 1 · ( -104 ) 21

x1,2 = -5 ± 25 +416 2

x1,2 = -5 ± 441 2

x1 = -5 + 441 2 = -5 +21 2 = 16 2 = 8

x2 = -5 - 441 2 = -5 -21 2 = -26 2 = -13

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - ( -104 ) = 25 4 + 104 = 25 4 + 416 4 = 441 4

x1,2 = - 5 2 ± 441 4

x1 = - 5 2 - 21 2 = - 26 2 = -13

x2 = - 5 2 + 21 2 = 16 2 = 8

(Alle Lösungen sind auch in der Definitionsmenge).

L={ -13 ; 8 }

Funktionstermbestimmung (Grad 4)

Beispiel:

Der Graph einer ganzrationalen Funktion vierten Grades ist achsensymmetrisch zur y-Achse, schneidet die y-Achse 6 Einheiten oberhalb des Ursprungs und hat den Hochpunkt H(2|8 ).

Bestimme den Term der Funktion f.

Lösung einblenden

Wenn eine ganzrationale Funktion achsensymmetrisch zur y-Achse ist, kann der Funktionsterm nur gerade x-Exponenten haben.

f(-x) = f(x)

Der gesuchte Funktionsterm muss also f(x)= a x 4 + b x 2 + c für bestimmte Werte für a, b und c sein.

Da ihr Graph die y-Achse 6 Einheiten oberhalb des Ursprungs schneidet, muss f(0) = 6 gelten.

Und weil der (Hoch-)Punkt H(2|8 ) auf dem Graph von f liegt, muss f(2) = 8 gelten.

Außerdem wissen wir ja, dass H(2|8 ) ein Hochpunkt ist, also muss f'(2)=0 sein.

Somit haben wir drei Informationen:

  1. f(0) = 6 (y-Achsenabschnitt)
  2. f(2)=8 (H(2|8 ) liegt auf dem Graph)
  3. f'(2)=0 (Hochpunkt bei x=2)

Diese Informationen setzen wir in die allgemeine Funktion und deren Ableitung ein:
f(x)= a x 4 + b x 2 + c
f(x)= 4 a x 3 +2 b x +0

Daraus ergibt sich:

  1. f(0) = 6: a 0 4 + b 0 2 + c = 6, also c = 6
  2. f(2)=8 : a 2 4 + b 2 2 + c = 8 , also 16⋅a + 4⋅b + c = 8
  3. f'(2)=0: 4 a 2 3 +2 b 2 +0 = 0, also 32a + 4b = 0

Wir sehen beim Betrachten der ersten Gleichungen, dass c = 6 ist und setzen dies in die zweite Gleichung ein:

2. f(2)=8 16⋅a + 4⋅b + 6 = 8 oder umgeformt:
16⋅a + 4⋅b = 2


Somit erhalten wir folgendes Lineare Gleichungssystem:

16a +4b = 2 (I) 32a +4b = 0 (II)

langsame Rechnung einblenden2·(I) -1·(II)

16a 4b = 2 (I) ( 32 -32 )a +( 8 -4 )b = ( 4 +0) (II)
16a +4b = 2 (I) +4b = 4 (II)
Zeile (II): +4b = 4

b = 1

eingesetzt in Zeile (I):

16a +4·(1 ) = 2 | -4
16 a = -2 | : 16

a = - 1 8

Die gesuchte Funktion ist also:

f(x) = - 1 8 x 4 + x 2 +6

65 Graph-Term-Zuordnung

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= x 3

g(x)= sin( x )

h(x)=tan(x)

i(x)= e x

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 1 gehört also zur Funktion i(x) = e x .

Zu Graph Nr. 2:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 2 gehört also zur Funktion h(x) = tan(x).

Zu Graph Nr. 3:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Der Graph Nr. 3 gehört also zur Funktion g(x) = sin( x ) .

Zu Graph Nr. 4:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Der Graph Nr. 4 gehört also zur Funktion f(x) = x 3 .

65 Graph-Term-Zuordnung 2

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= sin( x )

g(x)= x 2

h(x)=tan(x)

i(x)= cos( x )

j(x)= ln( x )

k(x)= e x

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Der Graph von ln( x ) besitzt für negative x-Werte keine Funktionswerte, weil man den Logarithmus nur aus positiven Zahlen ziehen kann. Für x → 0 streben die y-Werte gegen -∞. Der Graph nähert sich somit der negativen y-Achse asymptotisch an. Für positive x-Werte steigt er sehr langsam an. Er schneidet die x-Achse im Punkt (1|0), da e 0 = 1 und somit ln( 1 ) = 0 ist.

Der Graph Nr. 1 gehört also zur Funktion j(x) = ln( x ) .

Zu Graph Nr. 2:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 2 gehört also zur Funktion h(x) = tan(x).

Zu Graph Nr. 3:

Der Graph von e x nähert sich für negative x-Werte der x-Achse an und wächst für positive x-Werte sehr schnell. Er schneidet die y-Achse im Punkt (0|1), da e 0 = 1.

Der Graph Nr. 3 gehört also zur Funktion k(x) = e x .

Zu Graph Nr. 4:

Der Graph von cos( x ) schwingt zwischen 1 und -1. Im Gegensatz zum Sinus startet der Kosinus für x=0 bei 1 (cos(0)=1). Im Einheitskreis rechts wird dies deutlich:

Der Graph Nr. 4 gehört also zur Funktion i(x) = cos( x ) .

65 Graph-Term-Zuordnung 2 + Trans.

Beispiel:

Ordne die Funktionen den Graphen zu.

f(x)= sin( x )

g(x)=tan(x)

h(x)= x 3

i(x)= - sin( x )

j(x)=-tan(x)

k(x)= - x 3

1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
3
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
4
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Lösung einblenden

Zu Graph Nr. 1:

Den Graph von x 3 erkennt man an seinem Sattelpunkt und der immer größer werdenden Steigung, je weiter sich der Graph vom Ursprung entfernt. Er besitzt die Punkte (-2|-8), (-1|1), (0|0), (1|1), (2|8), usw.

Am Graph Nr. 1 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 1 gehört also zur Funktion k(x) = - x 3 .

Zu Graph Nr. 2:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Am Graph Nr. 2 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 2 gehört also zur Funktion j(x) = -tan(x).

Zu Graph Nr. 3:

Der Graph von sin( x ) zwischen 1 und -1. Im Gegensatz zum Kosinus (cos(x)) startet der Sinus für x=0 im Ursprung O(0|0), was man am Einheitskreis rechts sehen kann:

Am Graph Nr. 3 kann man all diese Eigenschaften erkennen, außer dass eben alle Punkte des Graphen noch an der x-Achse gespiegelt wurden.

Der Graph Nr. 3 gehört also zur Funktion i(x) = - sin( x ) .

Zu Graph Nr. 4:

Beim Graph von tan(x) = sin( x ) cos( x ) sieht man viele Asymptoten. Für x=0 ist tan(0)= sin(0) cos(0) = 0, da sin(0)=0. Für größer werdende x wird der Bruch sin(x) cos(x) , also der Tangens sehr schnell größer, da sin(x) immer größer und cos(x) immer kleiner wird. Geht x gegen π 2 , so geht der cos(x) gegen 0 und tan(x) = sin(x) cos(x) strebt somit gegen ∞. Daher kommen die Asymptoten. Für x> π 2 wird der Kosinus und damit der Funktionswert negativ, bleibt aber vom Betrag her sehr groß und wird bei x = π wieder 0, da sin(0) = 0. Da sowohl sin(x) als auch cos(x) 2π-periodisch sind, ist auch der tan(x) 2π-periodisch. (aufgrund der Punkt- bzw. Achsen-Symmetrie von sin(x) und cos(x) bezüglich der Mitte einer Periode ist tan(x) sogar π-periodisch).

Der Graph Nr. 4 gehört also zur Funktion g(x) = tan(x).