Aufgabenbeispiele von umw. in Scheitelform-> y statt f(x)

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 2 x 2 -9x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

2 x 2 -9x = 0
x ( 2x -9 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

2x -9 = 0 | +9
2x = 9 |:2
x2 = 9 2 = 4.5

L={0; 9 2 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 3 x 2 +12x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

3 x 2 +12x = 0
3 x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -4+0 2 = -2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-2|y) mit y = 3 ( -2 ) 2 +12( -2 ) = 12 -24 = -12.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-4 und x2=0 , Scheitel: S(-2|-12).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -8x +3 .

Lösung einblenden

1. Weg

y= x 2 -8x +3

Man erweitert die ersten beiden Summanden ( x 2 -8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -8x durch 2x und quadriert diese Ergebnis -4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -8x +16 -16 +3

= ( x -4 ) 2 -16 +3

= ( x -4 ) 2 -13

Jetzt kann man den Scheitel leicht ablesen: S(4|-13).


2. Weg

Wir betrachten nun nur x 2 -8x . Deren Parabel sieht ja genau gleich aus wie x 2 -8x +3 nur um 3 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -8x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -8x = 0
x ( x -8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -8 = 0 | +8
x2 = 8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(4|y).

y = 4 2 -84 +3 = 16 -32 +3 = -13

also: S(4|-13).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 3 x 2 +6x +4 .

Lösung einblenden

1. Weg

y= 3 x 2 +6x +4

= 3( x 2 +2x ) +4

Man erweitert die ersten beiden Summanden ( x 2 +2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 2x durch 2x und quadriert diese Ergebnis 1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 3( x 2 +2x +1 -1 ) +4

= 3( x 2 +2x +1 ) + 3 · ( -1 ) +4

= 3 ( x +1 ) 2 -3 +4

= 3 ( x +1 ) 2 +1

Jetzt kann man den Scheitel leicht ablesen: S(-1|1).


2. Weg

Wir betrachten nun nur 3 x 2 +6x . Deren Parabel sieht ja genau gleich aus wie 3 x 2 +6x +4 nur um 4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 3 x 2 +6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

3 x 2 +6x = 0
3 x ( x +2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +2 = 0 | -2
x2 = -2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-1|y).

y = 3 ( -1 ) 2 +6( -1 ) +4 = 3 -6 +4 = 1

also: S(-1|1).