Aufgabenbeispiele von umw. in Scheitelform-> y statt f(x)

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= 5 x 2 -7x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

5 x 2 -7x = 0
x ( 5x -7 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

5x -7 = 0 | +7
5x = 7 |:5
x2 = 7 5 = 1.4

L={0; 7 5 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 4 x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

4 x 2 +4x = 0
4 x ( x +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +1 = 0 | -1
x2 = -1

L={ -1 ; 0}

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen -1+0 2 = -0.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(-0.5|y) mit y = 4 ( -0,5 ) 2 +4( -0,5 ) = 1 -2 = -1.

Als Ergebnisse erhalten wir also: Nullstellen: x1=-1 und x2=0 , Scheitel: S(-0.5|-1).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 -2x +1 .

Lösung einblenden

1. Weg

y= x 2 -2x +1

Man erweitert die ersten beiden Summanden ( x 2 -2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -2x durch 2x und quadriert diese Ergebnis -1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 -2x +1 -1 +1

= ( x -1 ) 2 -1 +1

= ( x -1 ) 2

Jetzt kann man den Scheitel leicht ablesen: S(1|0).


2. Weg

Wir betrachten nun nur x 2 -2x . Deren Parabel sieht ja genau gleich aus wie x 2 -2x +1 nur um 1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 -2x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 -2x = 0
x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(1|y).

y = 1 2 -21 +1 = 1 -2 +1 = 0

also: S(1|0).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 3 x 2 +24x +5 .

Lösung einblenden

1. Weg

y= 3 x 2 +24x +5

= 3( x 2 +8x ) +5

Man erweitert die ersten beiden Summanden ( x 2 +8x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 8x durch 2x und quadriert diese Ergebnis 4 zu 16. Diese 16 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 16, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 3( x 2 +8x +16 -16 ) +5

= 3( x 2 +8x +16 ) + 3 · ( -16 ) +5

= 3 ( x +4 ) 2 -48 +5

= 3 ( x +4 ) 2 -43

Jetzt kann man den Scheitel leicht ablesen: S(-4|-43).


2. Weg

Wir betrachten nun nur 3 x 2 +24x . Deren Parabel sieht ja genau gleich aus wie 3 x 2 +24x +5 nur um 5 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 3 x 2 +24x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

3 x 2 +24x = 0
3 x ( x +8 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +8 = 0 | -8
x2 = -8

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-4|y).

y = 3 ( -4 ) 2 +24( -4 ) +5 = 48 -96 +5 = -43

also: S(-4|-43).