Aufgabenbeispiele von umw. in Scheitelform-> y statt f(x)

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 +4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

L={ -4 ; 0}

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= x 2 -4x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -4x = 0
x ( x -4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -4 = 0 | +4
x2 = 4

L={0; 4 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+4 2 = 2 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(2|y) mit y = 2 2 -42 = 4 -8 = -4.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=4 , Scheitel: S(2|-4).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 +4x +2 .

Lösung einblenden

1. Weg

y= x 2 +4x +2

Man erweitert die ersten beiden Summanden ( x 2 +4x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 4x durch 2x und quadriert diese Ergebnis 2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +4x +4 -4 +2

= ( x +2 ) 2 -4 +2

= ( x +2 ) 2 -2

Jetzt kann man den Scheitel leicht ablesen: S(-2|-2).


2. Weg

Wir betrachten nun nur x 2 +4x . Deren Parabel sieht ja genau gleich aus wie x 2 +4x +2 nur um 2 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +4x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-2|y).

y = ( -2 ) 2 +4( -2 ) +2 = 4 -8 +2 = -2

also: S(-2|-2).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 3 x 2 -6x -4 .

Lösung einblenden

1. Weg

y= 3 x 2 -6x -4

= 3( x 2 -2x ) -4

Man erweitert die ersten beiden Summanden ( x 2 -2x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die -2x durch 2x und quadriert diese Ergebnis -1 zu 1. Diese 1 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 1, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 3( x 2 -2x +1 -1 ) -4

= 3( x 2 -2x +1 ) + 3 · ( -1 ) -4

= 3 ( x -1 ) 2 -3 -4

= 3 ( x -1 ) 2 -7

Jetzt kann man den Scheitel leicht ablesen: S(1|-7).


2. Weg

Wir betrachten nun nur 3 x 2 -6x . Deren Parabel sieht ja genau gleich aus wie 3 x 2 -6x -4 nur um -4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 3 x 2 -6x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

3 x 2 -6x = 0
3 x ( x -2 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -2 = 0 | +2
x2 = 2

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(1|y).

y = 3 1 2 -61 -4 = 3 -6 -4 = -7

also: S(1|-7).