Aufgabenbeispiele von umw. in Scheitelform-> y statt f(x)

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Nullstellen mit Nullprodukt

Beispiel:

Bestimme die Nullstellen der quadratischen Funktion f mit
y= x 2 -9x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

x 2 -9x = 0
x ( x -9 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -9 = 0 | +9
x2 = 9

L={0; 9 }

Nullstellen und Scheitel (Nullprodukt)

Beispiel:

Bestimme die Nullstellen und dann den Scheitel der quadratischen Funktion f mit
y= 3 x 2 -3x

Lösung einblenden

Um die Nullstellen zu berechnen, setzen wir einfach y = 0.

Hier kann man x ausklammern und den Satz vom Nullprodukt anwenden

3 x 2 -3x = 0
3 x ( x -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x -1 = 0 | +1
x2 = 1

L={0; 1 }

Wegen der Symmetrie von Parabeln wissen wir, dass der Scheitel genau in der Mitte zwischen den Nullstellen liegen muss. Wir berechen also den Mittelwert der beiden Nullstellen 0+1 2 = 0.5 und erhalten so den x-Wert des Scheitels.

Der Scheitel hat also die Koordinaten S(0.5|y) mit y = 3 0,5 2 -30,5 = 0,75 -1,5 = -0.75.

Als Ergebnisse erhalten wir also: Nullstellen: x1=0 und x2=1 , Scheitel: S(0.5|-0.75).

x²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= x 2 +4x -4 .

Lösung einblenden

1. Weg

y= x 2 +4x -4

Man erweitert die ersten beiden Summanden ( x 2 +4x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 4x durch 2x und quadriert diese Ergebnis 2 zu 4. Diese 4 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 4, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= x 2 +4x +4 -4 -4

= ( x +2 ) 2 -4 -4

= ( x +2 ) 2 -8

Jetzt kann man den Scheitel leicht ablesen: S(-2|-8).


2. Weg

Wir betrachten nun nur x 2 +4x . Deren Parabel sieht ja genau gleich aus wie x 2 +4x -4 nur um -4 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von x 2 +4x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

x 2 +4x = 0
x ( x +4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +4 = 0 | -4
x2 = -4

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-2|y).

y = ( -2 ) 2 +4( -2 ) -4 = 4 -8 -4 = -8

also: S(-2|-8).


ax²+bx+c -> Scheitelform

Beispiel:

Bestimme die Koordinaten des Scheitels der Parabel von der Funktion f mit y= 2 x 2 +12x -1 .

Lösung einblenden

1. Weg

y= 2 x 2 +12x -1

= 2( x 2 +6x ) -1

Man erweitert die ersten beiden Summanden ( x 2 +6x ) zu einem 'binomischen Formel'-Term. Dazu teilt man die 6x durch 2x und quadriert diese Ergebnis 3 zu 9. Diese 9 fügt man dann an dritter Stelle in die Summe ein. So erhält man einen Term der Form x² ± 2xb + b², den man mit der binomischen Formel als (x ± b)² schreiben kann. Damit der Funktionsterm aber nicht verändert wird muss man die 9, die man an 3. Stelle eingefügt hat, danach auch wieder abziehen.

= 2( x 2 +6x +9 -9 ) -1

= 2( x 2 +6x +9 ) + 2 · ( -9 ) -1

= 2 ( x +3 ) 2 -18 -1

= 2 ( x +3 ) 2 -19

Jetzt kann man den Scheitel leicht ablesen: S(-3|-19).


2. Weg

Wir betrachten nun nur 2 x 2 +12x . Deren Parabel sieht ja genau gleich aus wie 2 x 2 +12x -1 nur um -1 nach oben/unten verschoben. Das heißt beide Parabeln haben ihren Scheitel an der gleichen x-Stelle.

Von 2 x 2 +12x können wir aber über Ausklammern und den Satz vom Nullprodukt sehr leicht die Nullstellen bestimmen.

2 x 2 +12x = 0
2 x ( x +6 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

x +6 = 0 | -6
x2 = -6

Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(-3|y).

y = 2 ( -3 ) 2 +12( -3 ) -1 = 18 -36 -1 = -19

also: S(-3|-19).