Aufgabenbeispiele von zusammengesetzt

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Berechnung von Volumen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne das Volumen des zusammengesetzten Körpers.

Lösung einblenden

Der gezeichnete Körper besteht aus zwei Teilen: einem Zylinder und einer halben Kugel, die auf dem Zylinder liegt.

Das Volumen des Zylinder kann man ja relativ einfach mit der Formel
VZ = G ⋅ h = π ⋅ r² ⋅ h berechnen.

V1 = π ⋅ r² ⋅ h = π⋅(2 cm)² ⋅ 3 cm = 12π cm³ ≈ 37,7 cm³

Bei der draufliegenden Halbkugel lässt sich das Volumen einfach als halbes Kugelvolumen berechnen:
V2 = 1 2 4 3 π⋅r³ = 2 3 ⋅ π ⋅(2 cm)³ = 16 3 π cm³ ≈ 16,76 cm³

Für das gesuchte Volumen ergibt sich somit: V = V1 + V2 ≈ 37,7 cm² + 16,76 cm² ≈ 54,5 cm²

Berechnung von Oberflächeninhalt

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Berechne die Oberfläche des zusammengesetzten Körpers.

Lösung einblenden

Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einem halben Zylinder, der auf dem Quader liegt.

Normalerweise hätte der Quader 6 Flächen: je zwei mit dem Flächeninhalt a⋅b (Boden un Decke), zwei mit a⋅c (vorne, hinten) und zwei mit b⋅c (Seitenwände). Weil ja hier aber die Deckfläche nicht frei ist, sondern von dem halben Zylinder belegt ist, gilt hier für die sichtbare Oberfläche des Quaders:

O1 = a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 3 mm⋅4 mm + 2⋅3 mm⋅6 mm + 2⋅4 mm⋅6 mm
= 12 mm² + 36 mm² + 48 mm²
96 mm²

Bei dem draufliegenden Halbzylinder sehen wir vorne und hinten jeweils einen halben Kreis mit Radius 1,5 mm,
also 2⋅ 1 2 πr² = π⋅1,5² mm² ≈ 7,07 mm²
Außerdem haben wir noch den halben Zylindermantel: Dieser hat (abgerollt) die Form eines Rechtecks, bei dem eine Seite eben die Tiefe nach hinten b=4 mm ist und die andere Seite ein halber Kreisumfang mit Radius r= a 2 =1.5 mm, also U = π⋅r = 1.5π mm.
Somit gilt für die sichtbare Oberfläche des Halbylinders:
O2 = πr² + π⋅r⋅b = 1.5²π mm + π⋅1.5⋅4 mm = 8.25⋅π mm² ≈ 25,92 mm².

Für die gesuchte Oberfläche ergibt sich somit: O = O1 + O2 ≈ 96 mm² + 25,92 mm² ≈ 121,92 mm²