Aufgabenbeispiele von zusammengesetzt
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Berechnung von Volumen
Beispiel:
Berechne das Volumen des zusammengesetzten Körpers.
Der gezeichnete Körper besteht aus zwei Teilen: einem Zylinder und einer halben Kugel, die auf dem Zylinder liegt.
Das Volumen des Zylinder kann man ja relativ einfach mit der Formel
VZ = G ⋅ h = π ⋅ r² ⋅ h berechnen.
V1 = π ⋅ r² ⋅ h = π⋅(4 cm)² ⋅ 4 cm = 64π cm³ ≈ 201,06 cm³
Bei der draufliegenden Halbkugel lässt sich das Volumen einfach als halbes Kugelvolumen berechnen:
V2 = ⋅ π⋅r³ = ⋅ π
⋅(4 cm)³ = π cm³ ≈
134,04 cm³
Für das gesuchte Volumen ergibt sich somit: V = V1 + V2 ≈ 201,06 cm² + 134,04 cm² ≈ 335,1 cm²
Berechnung von Oberflächeninhalt
Beispiel:
Berechne die Oberfläche des zusammengesetzten Körpers.
Der gezeichnete Körper besteht aus zwei Teilen: einem Quader und einer geraden quadratischen Pyramide, die auf dem Quader liegt.
Normalerweise hätte der Quader 6 Flächen: je zwei mit dem Flächeninhalt a⋅b (Boden un Decke), zwei mit a⋅c (vorne, hinten) und zwei mit b⋅c (Seitenwände). Weil ja hier aber die Deckfläche nicht frei ist, sondern von der Pyramide bedeckt ist, gilt hier für die sichtbare Oberfläche des Quaders:
O1 = a⋅b + 2⋅a⋅c + 2⋅b⋅c
= 7 m⋅7 m +
2⋅7 m⋅2 m + 2⋅7 m⋅2 m
=
49 m² + 28 m² + 28 m²
105 m²
Bei der draufliegenden Pyramide besteht die sichtbare Oberfläche nur aus den 4 gleichen Seitenflächen. Um deren Flächeninhalt zu berechnen, brauchen wir
außer der Grundseitenlänge a = 7 m auch noch die Höhe eines Seitendreicks. Diese können wir als Hypothenuse in einem rechtwinkligen
Dreieck mit den Katheten = 3.5 m und h = 2 m berechnen, da ja der Fuß der Höhe
genau in der Mitte der Grundfläche liegt. Es gilt also:
ha² = ()² + h², oder eben ha
=
=
Damit können wir den Mantel der Pyramide berechnen: O2 = 4 ⋅
Für die gesuchte Oberfläche ergibt sich somit: O = O1 + O2 ≈ 105 m² + 109,57 m² ≈ 214,57 m²