Aufgabenbeispiele von Wurzelgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

3 ( -x ) = 6

Lösung einblenden
3 ( -x ) = 6 |:3
( -x ) = 2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-x = 2 2
-x = 4 |:(-1 )
x = -4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in 3 ( -x )

= 3 ( -( -4 ) )

= 3 4

= 6

Rechte Seite:

x = -4 in 6

= 6

Also 6 = 6

x = -4 ist somit eine Lösung !

L={ -4 }

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-5x -4 = x

Lösung einblenden
-5x -4 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-5x -4 = ( x ) 2
-5x -4 = x 2 | - x 2

- x 2 -5x -4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +5 ± ( -5 ) 2 -4 · ( -1 ) · ( -4 ) 2( -1 )

x1,2 = +5 ± 25 -16 -2

x1,2 = +5 ± 9 -2

x1 = 5 + 9 -2 = 5 +3 -2 = 8 -2 = -4

x2 = 5 - 9 -2 = 5 -3 -2 = 2 -2 = -1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -5x -4 = 0 |: -1

x 2 +5x +4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 5 2 ) 2 - 4 = 25 4 - 4 = 25 4 - 16 4 = 9 4

x1,2 = - 5 2 ± 9 4

x1 = - 5 2 - 3 2 = - 8 2 = -4

x2 = - 5 2 + 3 2 = - 2 2 = -1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -5x -4

= -5( -4 ) -4

= 20 -4

= 16

= 4

Rechte Seite:

x = -4 in x

= -4

Also 4 ≠ -4

x = -4 ist somit keine Lösung !

Probe für x = -1

Linke Seite:

x = -1 in -5x -4

= -5( -1 ) -4

= 5 -4

= 1

= 1

Rechte Seite:

x = -1 in x

= -1

Also 1 ≠ -1

x = -1 ist somit keine Lösung !

L={}

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

3x +3 = x +2 +1

Lösung einblenden
3x +3 = x +2 +1 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +3 = ( x +2 +1 ) 2
3x +3 = 2 x +2 + x +3 | -3x -3 -2 x +2
-2 x +2 = -2x |:(-2 )
x +2 = x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
x +2 = ( x ) 2
x +2 = x 2 | - x 2

- x 2 + x +2 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = -1 ± 1 2 -4 · ( -1 ) · 2 2( -1 )

x1,2 = -1 ± 1 +8 -2

x1,2 = -1 ± 9 -2

x1 = -1 + 9 -2 = -1 +3 -2 = 2 -2 = -1

x2 = -1 - 9 -2 = -1 -3 -2 = -4 -2 = 2

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 + x +2 = 0 |: -1

x 2 - x -2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 2 ) 2 - ( -2 ) = 1 4 + 2 = 1 4 + 8 4 = 9 4

x1,2 = 1 2 ± 9 4

x1 = 1 2 - 3 2 = - 2 2 = -1

x2 = 1 2 + 3 2 = 4 2 = 2

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -1

Linke Seite:

x = -1 in 3x +3

= 3( -1 ) +3

= -3 +3

= 0

= 0

Rechte Seite:

x = -1 in x +2 +1

= -1 +2 +1

= 1 +1

= 1 +1

= 2

Also 0 ≠ 2

x = -1 ist somit keine Lösung !

Probe für x = 2

Linke Seite:

x = 2 in 3x +3

= 32 +3

= 6 +3

= 9

= 3

Rechte Seite:

x = 2 in x +2 +1

= 2 +2 +1

= 4 +1

= 2 +1

= 3

Also 3 = 3

x = 2 ist somit eine Lösung !

L={ 2 }