Aufgabenbeispiele von Wurzelgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Wurzelgleichung

Beispiel:

Löse die folgende Gleichung:

-2x +6 = -4

Lösung einblenden
-2x +6 = -4

Diese Gleichung kann keine Lösung haben, da eine Wurzel nie einen negativen Wert annehmen kann!

L={}

Wurzelgleichung (-> quadr.)

Beispiel:

Löse die folgende Gleichung:

-3x +4 = -x

Lösung einblenden
-3x +4 = -x |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
-3x +4 = ( -x ) 2
-3x +4 = x 2 | - x 2

- x 2 -3x +4 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +3 ± ( -3 ) 2 -4 · ( -1 ) · 4 2( -1 )

x1,2 = +3 ± 9 +16 -2

x1,2 = +3 ± 25 -2

x1 = 3 + 25 -2 = 3 +5 -2 = 8 -2 = -4

x2 = 3 - 25 -2 = 3 -5 -2 = -2 -2 = 1

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -3x +4 = 0 |: -1

x 2 +3x -4 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -4 ) = 9 4 + 4 = 9 4 + 16 4 = 25 4

x1,2 = - 3 2 ± 25 4

x1 = - 3 2 - 5 2 = - 8 2 = -4

x2 = - 3 2 + 5 2 = 2 2 = 1

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -4

Linke Seite:

x = -4 in -3x +4

= -3( -4 ) +4

= 12 +4

= 16

= 4

Rechte Seite:

x = -4 in -x

= -( -4 )

= 4

Also 4 = 4

x = -4 ist somit eine Lösung !

Probe für x = 1

Linke Seite:

x = 1 in -3x +4

= -31 +4

= -3 +4

= 1

= 1

Rechte Seite:

x = 1 in -x

= -1

Also 1 ≠ -1

x = 1 ist somit keine Lösung !

L={ -4 }

Wurzelgleichung (2 Wurzeln, 2x quadr.)

Beispiel:

Löse die folgende Gleichung:

7x +64 = 3x +28 +2

Lösung einblenden
7x +64 = 3x +28 +2 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
7x +64 = ( 3x +28 +2 ) 2
7x +64 = 4 3x +28 +3x +32 | -7x -64 -4 3x +28
-4 3x +28 = -4x -32 |:(-4 )
3x +28 = x +8 |(⋅)2 (Vorsicht: evtl. Vergrößerung der Lösungsmenge)
3x +28 = ( x +8 ) 2
3x +28 = x 2 +16x +64 | - x 2 -16x -64

- x 2 -13x -36 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

x1,2 = +13 ± ( -13 ) 2 -4 · ( -1 ) · ( -36 ) 2( -1 )

x1,2 = +13 ± 169 -144 -2

x1,2 = +13 ± 25 -2

x1 = 13 + 25 -2 = 13 +5 -2 = 18 -2 = -9

x2 = 13 - 25 -2 = 13 -5 -2 = 8 -2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "-1 " teilen:

- x 2 -13x -36 = 0 |: -1

x 2 +13x +36 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 13 2 ) 2 - 36 = 169 4 - 36 = 169 4 - 144 4 = 25 4

x1,2 = - 13 2 ± 25 4

x1 = - 13 2 - 5 2 = - 18 2 = -9

x2 = - 13 2 + 5 2 = - 8 2 = -4

Beim Quadrieren oben haben wir eventuel die Lösungesmenge vergrößert.
Deswegen müssen wir jetzt bei allen Lösungen eine Probe machen, ob sie auch wirklich Lösungen sind.

Probe für x = -9

Linke Seite:

x = -9 in 7x +64

= 7( -9 ) +64

= -63 +64

= 1

= 1

Rechte Seite:

x = -9 in 3x +28 +2

= 3( -9 ) +28 +2

= -27 +28 +2

= 1 +2

= 1 +2

= 3

Also 1 ≠ 3

x = -9 ist somit keine Lösung !

Probe für x = -4

Linke Seite:

x = -4 in 7x +64

= 7( -4 ) +64

= -28 +64

= 36

= 6

Rechte Seite:

x = -4 in 3x +28 +2

= 3( -4 ) +28 +2

= -12 +28 +2

= 16 +2

= 4 +2

= 6

Also 6 = 6

x = -4 ist somit eine Lösung !

L={ -4 }