Aufgabenbeispiele von Exponentialgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgl. elementar

Beispiel:

Löse die Gleichung ohne WTR: e 4x -8 = 1

Lösung einblenden

e 4x -8 = 1

Zuerst versuchen wir den Term rechts auch als Exponentialterm zu schreiben.

e 4x -8 = e 0

Wir erkennen, dass links und rechts Exponentialterme mit gleicher Basis e stehen.
Diese Terme sind genau dann gleich, wenn ihre Exponenten gleich sind. Deswegen setzen wir einfach nur diese gleich:

4x -8 = 0 | +8
4x = 8 |:4
x = 2

Exponentialgl. vermischt

Beispiel:

Löse die folgende Gleichung:

e 2x -2 e x -24 = 0

Lösung einblenden
e 2x -2 e x -24 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 -2u -24 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -24 ) 21

u1,2 = +2 ± 4 +96 2

u1,2 = +2 ± 100 2

u1 = 2 + 100 2 = 2 +10 2 = 12 2 = 6

u2 = 2 - 100 2 = 2 -10 2 = -8 2 = -4

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( -1 ) 2 - ( -24 ) = 1+ 24 = 25

x1,2 = 1 ± 25

x1 = 1 - 5 = -4

x2 = 1 + 5 = 6

Rücksubstitution:

u1: e x = 6

e x = 6 |ln(⋅)
x1 = ln( 6 ) ≈ 1.7918

u2: e x = -4

e x = -4

Diese Gleichung hat keine Lösung!

L={ ln( 6 ) }

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Konto wird mit 5,5% verzinst.Bestimme die Zeit bis sich der Kontostand verdoppelt hat.

Lösung einblenden

Die prozentuale Zunahme um 5.5% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 5.5% dazukommen,
also Bneu = B + 5.5 100 ⋅B = (1 + 5.5 100 ) ⋅ B = 1,055 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=1,055.

Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).

Also TV = log1.055(2) ≈ 12.95 Jahre

Exponentialgl. Substitution

Beispiel:

Löse die folgende Gleichung:

e 3x +3 e 2x -18 e x = 0

Lösung einblenden
e 3x +3 e 2x -18 e x = 0
( e 2x +3 e x -18 ) e x = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

e 2x +3 e x -18 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +3u -18 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -3 ± 3 2 -4 · 1 · ( -18 ) 21

u1,2 = -3 ± 9 +72 2

u1,2 = -3 ± 81 2

u1 = -3 + 81 2 = -3 +9 2 = 6 2 = 3

u2 = -3 - 81 2 = -3 -9 2 = -12 2 = -6

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( 3 2 ) 2 - ( -18 ) = 9 4 + 18 = 9 4 + 72 4 = 81 4

x1,2 = - 3 2 ± 81 4

x1 = - 3 2 - 9 2 = - 12 2 = -6

x2 = - 3 2 + 9 2 = 6 2 = 3

Rücksubstitution:

u1: e x = 3

e x = 3 |ln(⋅)
x1 = ln( 3 ) ≈ 1.0986

u2: e x = -6

e x = -6

Diese Gleichung hat keine Lösung!


2. Fall:

e x = 0

Diese Gleichung hat keine Lösung!

L={ ln( 3 ) }