Aufgabenbeispiele von Exponentialgleichungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Exponentialgleichungen (einfach)
Beispiel:
Löse die folgende Gleichung:
=
| = | |⋅ | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
L={ }
Im Idealfall erkennt man bereits:
= 16
=
und kann so schneller und ohne WTR auf die Lösung x=4 kommen.
Exponentialgl. mit 2 e-Termen
Beispiel:
Löse die folgende Gleichung:
=
Da links und rechts jeweils die gleiche Basis (und der gleiche Koeffizient)
steht,
sind die linke und die rechte Seite genau dann gleich, wenn die Exponenten gleich sind.
Wir setzen also nur die Exponenten gleich:
| = | | | ||
| = | |: | ||
| = |
L={
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 70% = 30 %
Exponentialgl. Substitution BF
Beispiel:
Löse die folgende Gleichung:
=
| = |
Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!
Setze u =
Draus ergibt sich die quadratische Gleichung:
= 0
Lösen mit der a-b-c-Formel (Mitternachtsformel):
eingesetzt in x1,2 = ergibt:
u1,2 =
u1,2 =
u1,2 =
u1 =
= =
u2 =
Lösen mit der p-q-Formel (x² + px + q = 0):
vor dem Einsetzen in x1,2 =
berechnen wir zuerst die Diskriminante D =
D =
x1,2 =
x1 =
x2 =
Rücksubstitution:
u1:
|
|
= | |ln(⋅) | |
| x1 | = | ≈ 0 |
u2:
|
|
= |
Diese Gleichung hat keine Lösung!
L={
