Aufgabenbeispiele von Exponentialgleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Exponentialgleichungen (einfach)

Beispiel:

Löse die folgende Gleichung:

1 2 2 x = 8

Lösung einblenden
1 2 2 x = 8 |⋅2
2 x = 16 |lg(⋅)
lg( 2 x ) = lg( 16 )
x · lg( 2 ) = lg( 16 ) |: lg( 2 )
x = lg( 16 ) lg( 2 )
x = 4

L={ 4 }

Im Idealfall erkennt man bereits:

2 x = 16

2 x = 2 4

und kann so schneller und ohne WTR auf die Lösung x=4 kommen.

Exponentialgl. mit 2 e-Termen

Beispiel:

Löse die folgende Gleichung:

5 e -x = 5 e -3x

Lösung einblenden
5 e -x = 5 e -3x

Da links und rechts jeweils die gleiche Basis (und der gleiche Koeffizient) steht,
sind die linke und die rechte Seite genau dann gleich, wenn die Exponenten gleich sind.
Wir setzen also nur die Exponenten gleich:

-x = -3x | +3x
2x = 0 |:2
x = 0

L={0}

prozentale Änderung bestimmen

Beispiel:

Gib für die exponentielle Wachstumsfunktion f mit f(t)= 187 0,7 t die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?

Lösung einblenden

f(0) = 187

f(1) = 187 0,7

f(2) = 187 0,70,7

f(3) = 187 0,70,70,7

f(4) = 187 0,70,70,70,7

...

Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit 0,7 multipliziert. Da 0,7 < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das 0,7-fache, also auf 70 % des vorherigen Funktionswertes.

Die prozentuale Abnahme beträgt also 100% - 70% = 30 %

Exponentialgl. Substitution BF

Beispiel:

Löse die folgende Gleichung:

e 2x +6 e x -7 = 0

Lösung einblenden
e 2x +6 e x -7 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = e x

Draus ergibt sich die quadratische Gleichung:

u 2 +6u -7 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = -6 ± 6 2 -4 · 1 · ( -7 ) 21

u1,2 = -6 ± 36 +28 2

u1,2 = -6 ± 64 2

u1 = -6 + 64 2 = -6 +8 2 = 2 2 = 1

u2 = -6 - 64 2 = -6 -8 2 = -14 2 = -7

Lösen mit der p-q-Formel (x² + px + q = 0):

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = 3 2 - ( -7 ) = 9+ 7 = 16

x1,2 = -3 ± 16

x1 = -3 - 4 = -7

x2 = -3 + 4 = 1

Rücksubstitution:

u1: e x = 1

e x = 1 |ln(⋅)
x1 = 0 ≈ 0

u2: e x = -7

e x = -7

Diese Gleichung hat keine Lösung!

L={0}