Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = 0,8

Lösung einblenden
canvas
cos( x ) = 0,8 |cos-1(⋅)

Der WTR liefert nun als Wert 0.64350110879328

1. Fall:

x1 = 0,644

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,8 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.8 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 0,644
bzw. bei - 0,644 +2π= 5,64 liegen muss.

2. Fall:

x2 = 5,64

L={ 0,644 ; 5,64 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-2 cos( 2x - 3 2 π) -3 = -1

Lösung einblenden
-2 cos( 2x - 3 2 π) -3 = -1 | +3
-2 cos( 2x - 3 2 π) = 2 |:-2
canvas
cos( 2x - 3 2 π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

2x - 3 2 π = π

oder

2x - 3 2 π = π-2π
2x - 3 2 π = -π |⋅ 2
2( 2x - 3 2 π) = -2π
4x -3π = -2π | +3π
4x = π |:4
x = 1 4 π

L={ 1 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
-3 cos( 2x - π) +1 = 1,15

Lösung einblenden
-3 cos( 2x - π) +1 = 1,15 | -1
-3 cos( 2x - π) = 0,15 |:-3
canvas
cos( 2x - π) = -0,05 |cos-1(⋅)

Der WTR liefert nun als Wert 1.6208171836007

1. Fall:

2x - π = 1,621 | + π
2x = 1,621 + π
2x = 4,7626 |:2
x1 = 2,3813

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - π) = -0,05 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.05 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,621
bzw. bei - 1,621 +2π= 4,662 liegen muss.

2. Fall:

2x - π = 4,662

oder

2x - π = 4,662 -2π | + π
2x = 4,662 - π
2x = 1,5204 |:2
x2 = 0,7602

L={ 0,7602 ; 2,3813 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
1 2 sin( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
1 2 sin( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 cos( x ) +1 ) · sin( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 cos( x ) +1 = 0 | -1
2 cos( x ) = -1 |:2
canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

2. Fall:

canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x4 = π

L={0; 2 3 π ; π ; 4 3 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 - 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Rücksubstitution:

u1: cos( x ) = 1

canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

u2: cos( x ) = 0,5

canvas
cos( x ) = 0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 1.0471975511966

1. Fall:

x2 = 1 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 3 π
bzw. bei - 1 3 π +2π= 5 3 π liegen muss.

2. Fall:

x3 = 5 3 π

L={0; 1 3 π ; 5 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 - cos( x ) = 0

Lösung einblenden
( cos( x ) ) 2 - cos( x ) = 0
( cos( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 0

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={0; 1 2 π ; 3 2 π }