Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = -0,8

Lösung einblenden
canvas
sin( x ) = -0,8 |sin-1(⋅)

Der WTR liefert nun als Wert -0.92729521800161

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;6.2831853071796) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,356

1. Fall:

x1 = 5,356

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,8 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.8 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,356 =-2.2144 bzw. bei -2.2144+2π= 4,069 liegen muss.

2. Fall:

x2 = 4,069

L={ 4,069 ; 5,356 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
- sin( 2x + 1 2 π) -2 = -3

Lösung einblenden
- sin( 2x + 1 2 π) -2 = -3 | +2
- sin( 2x + 1 2 π) = -1 |:-1
canvas
sin( 2x + 1 2 π) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

2x + 1 2 π = 1 2 π |⋅ 2
2( 2x + 1 2 π) = π
4x + π = π | - π
4x = 0 |:4
x = 0

L={0}

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
- sin( 2x + 3 2 π) = -0,3

Lösung einblenden
- sin( 2x + 3 2 π) = -0,3 |:-1
canvas
sin( 2x + 3 2 π) = 0,3 |sin-1(⋅)

Der WTR liefert nun als Wert 0.3046926540154

1. Fall:

2x + 3 2 π = 0,305

oder

2x + 3 2 π = 0,305 +2π |⋅ 2
4x +3π = 0,61 +4π | -3π
4x = 0,61 + π
4x = 3,7516 |:4
x1 = 0,9379

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0,3 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.3 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,305 = 2,837 liegen muss.

2. Fall:

2x + 3 2 π = 2,837

oder

2x + 3 2 π = 2,837 +2π |⋅ 2
4x +3π = 5,674 +4π | -3π
4x = 5,674 + π
4x = 8,8156 |:4
x2 = 2,2039

L={ 0,9379 ; 2,2039 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- 1 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) -1 = 0 | +1
2 sin( x ) = 1 |:2
canvas
sin( x ) = 0,5 |sin-1(⋅)

Der WTR liefert nun als Wert 0.5235987755983

1. Fall:

x1 = 5 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5 6 π = 1 6 π liegen muss.

2. Fall:

x2 = 1 6 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x3 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x4 = 3 2 π

L={ 1 6 π ; 1 2 π ; 5 6 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Lösung einblenden
( cos( x ) ) 2 + 3 2 cos( x ) + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = cos( x )

Draus ergibt sich die quadratische Gleichung:

u 2 + 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 + 3 2 u + 1 2 ) = 0

2 u 2 +3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = -3 ± 3 2 -4 · 2 · 1 22

u1,2 = -3 ± 9 -8 4

u1,2 = -3 ± 1 4

u1 = -3 + 1 4 = -3 +1 4 = -2 4 = -0,5

u2 = -3 - 1 4 = -3 -1 4 = -4 4 = -1

Rücksubstitution:

u1: cos( x ) = -0,5

canvas
cos( x ) = -0,5 |cos-1(⋅)

Der WTR liefert nun als Wert 2.0943951023932

1. Fall:

x1 = 2 3 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,5 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2 3 π
bzw. bei - 2 3 π +2π= 4 3 π liegen muss.

2. Fall:

x2 = 4 3 π

u2: cos( x ) = -1

canvas
cos( x ) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x3 = π

L={ 2 3 π ; π ; 4 3 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 + ( sin( x ) ) 2 = 0

Lösung einblenden
( sin( x ) ) 4 + ( sin( x ) ) 2 = 0
( sin( x ) ) 2 ( ( sin( x ) ) 2 +1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

( sin( x ) ) 2 = 0 | 2
sin( x ) = 0
canvas
sin( x ) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

x2 = π

2. Fall:

( sin( x ) ) 2 +1 = 0 | -1
( sin( x ) ) 2 = -1 | 2

Diese Gleichung hat keine (reele) Lösung!

L={0; π }

0 ist 2-fache Lösung! π ist 2-fache Lösung!