Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,1

Lösung einblenden
canvas
cos( x ) = -0,1 |cos-1(⋅)

Der WTR liefert nun als Wert 1.6709637479565

1. Fall:

x1 = 1,671

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,1 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1,671
bzw. bei - 1,671 +2π= 4,612 liegen muss.

2. Fall:

x2 = 4,612

L={ 1,671 ; 4,612 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 sin( 2x + 3 2 π) +1 = 1

Lösung einblenden
-3 sin( 2x + 3 2 π) +1 = 1 | -1
-3 sin( 2x + 3 2 π) = 0 |:-3
canvas
sin( 2x + 3 2 π) = 0 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x + 3 2 π = 0

oder

2x + 3 2 π = 0+2π
2x + 3 2 π = 2π |⋅ 2
2( 2x + 3 2 π) = 4π
4x +3π = 4π | -3π
4x = π |:4
x1 = 1 4 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( 2x + 3 2 π) = 0 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0= π liegen muss.

2. Fall:

2x + 3 2 π = π

oder

2x + 3 2 π = π+2π
2x + 3 2 π = 3π |⋅ 2
2( 2x + 3 2 π) = 6π
4x +3π = 6π | -3π
4x = 3π |:4
x2 = 3 4 π

L={ 1 4 π ; 3 4 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; 2π ).
-3 sin( x - π) -3 = -2,7

Lösung einblenden
-3 sin( x - π) -3 = -2,7 | +3
-3 sin( x - π) = 0,3 |:-3
canvas
sin( x - π) = -0,1 |sin-1(⋅)

Der WTR liefert nun als Wert -0.10016742116156

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0; 2π ) suchen, addieren wir einfach noch 2π dazu und erhalten so 6,183

1. Fall:

x - π = 6,183

oder

x - π = 6,183 -2π | + π
x1 = 6,183 - π
x1 = 3,0414

Am Einheitskreis erkennen wir, dass die Gleichung sin( x - π) = -0,1 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.1 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 6,183 =-3.0414 bzw. bei -3.0414+2π= 3,242 liegen muss.

2. Fall:

x - π = 3,242

oder

x - π = 3,242 -2π | + π
x2 = 3,242 - π
x2 = 0,1004

L={ 0,1004 ; 3,0414 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
- cos( x ) + sin( x ) · cos( x ) = 0
( sin( x ) -1 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

sin( x ) -1 = 0 | +1 canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x2 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x3 = 3 2 π

L={ 1 2 π ; 3 2 π }

1 2 π ist 2-fache Lösung!

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 2 - 1 2 sin( x ) - 1 2 = 0

Lösung einblenden
( sin( x ) ) 2 - 1 2 sin( x ) - 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = sin( x )

Draus ergibt sich die quadratische Gleichung:

u 2 - 1 2 u - 1 2 = 0 |⋅ 2
2( u 2 - 1 2 u - 1 2 ) = 0

2 u 2 - u -1 = 0

Lösen mit der a-b-c-Formel (Mitternachtsformel):

eingesetzt in x1,2 = - b ± b 2 -4a · c 2a ergibt:

u1,2 = +1 ± ( -1 ) 2 -4 · 2 · ( -1 ) 22

u1,2 = +1 ± 1 +8 4

u1,2 = +1 ± 9 4

u1 = 1 + 9 4 = 1 +3 4 = 4 4 = 1

u2 = 1 - 9 4 = 1 -3 4 = -2 4 = -0,5

Lösen mit der p-q-Formel (x² + px + q = 0):

Um die Gleichung auf die Form "x² + px + q = 0" zu bekommen, müssen wir zuerst die ganze Gleichung durch "2 " teilen:

2 u 2 - u -1 = 0 |: 2

u 2 - 1 2 u - 1 2 = 0

vor dem Einsetzen in x1,2 = - p 2 ± ( p 2 ) 2 - q
berechnen wir zuerst die Diskriminante D = ( p 2 ) 2 - q :

D = ( - 1 4 ) 2 - ( - 1 2 ) = 1 16 + 1 2 = 1 16 + 8 16 = 9 16

x1,2 = 1 4 ± 9 16

x1 = 1 4 - 3 4 = - 2 4 = -0.5

x2 = 1 4 + 3 4 = 4 4 = 1

Rücksubstitution:

u1: sin( x ) = 1

canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 1 2 π

u2: sin( x ) = -0,5

canvas
sin( x ) = -0,5 |sin-1(⋅)

Der WTR liefert nun als Wert -0.5235987755983

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 11 6 π

1. Fall:

x2 = 11 6 π

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,5 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.5 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 11 6 π =-2.618 bzw. bei -2.618+2π= 7 6 π liegen muss.

2. Fall:

x3 = 7 6 π

L={ 1 2 π ; 7 6 π ; 11 6 π }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( -3 cos( 3x - π) -3 ) · ( cos( x ) -1 ) = 0

Lösung einblenden
( -3 cos( 3x - π) -3 ) ( cos( x ) -1 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

-3 cos( 3x - π) -3 = 0 | +3
-3 cos( 3x - π) = 3 |:-3
canvas
cos( 3x - π) = -1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

3x - π = π

oder

3x - π = π-2π
3x - π = -π | + π
3x = 0 |:3
x1 = 0

Da -3 cos( 3x - π) -3 die Periode 2 3 π besitzt, aber alle Lösungen im Intervall [0; 2π ) gesucht sind, können wir auf die Lösung(en) immer noch weitere Perioden draufaddieren und erhalten so folgende weitere Lösungen:

x2 = 0 + 1⋅ 2 3 π = 2 3 π
x3 = 0 + 2⋅ 2 3 π = 4 3 π


2. Fall:

cos( x ) -1 = 0 | +1 canvas
cos( x ) = 1 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

x4 = 0

L={0; 2 3 π ; 4 3 π }

0 ist 2-fache Lösung!