Aufgabenbeispiele von Trigonometrische Gleichungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
cos( x ) = -0,7

Lösung einblenden
canvas
cos( x ) = -0,7 |cos-1(⋅)

Der WTR liefert nun als Wert 2.3461938234056

1. Fall:

x1 = 2,346

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = -0,7 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.7 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2,346
bzw. bei - 2,346 +2π= 3,937 liegen muss.

2. Fall:

x2 = 3,937

L={ 2,346 ; 3,937 }

trigonometrische Gleichungen (ohne WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ). Gib dabei immer die kleinsten positiven Lösungen an:
-3 cos( 2x - 3 2 π) = 0

Lösung einblenden
-3 cos( 2x - 3 2 π) = 0 |:-3
canvas
cos( 2x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

2x - 3 2 π = 1 2 π

oder

2x - 3 2 π = 1 2 π-2π
2x - 3 2 π = - 3 2 π |⋅ 2
2( 2x - 3 2 π) = -3π
4x -3π = -3π | +3π
4x = 0 |:4
x1 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

2x - 3 2 π = 3 2 π

oder

2x - 3 2 π = 3 2 π-2π
2x - 3 2 π = - 1 2 π |⋅ 2
2( 2x - 3 2 π) = -π
4x -3π = -π | +3π
4x = 2π |:4
x2 = 1 2 π

L={0; 1 2 π }

trigonometrische Gleichungen (mit WTR)

Beispiel:

Bestimme alle Lösungen immer jeweils innerhalb einer Periode [0; π ).
cos( 2x + π) -2 = -2,95

Lösung einblenden
cos( 2x + π) -2 = -2,95 | +2 canvas
cos( 2x + π) = -0,95 |cos-1(⋅)

Der WTR liefert nun als Wert 2.8240322242983

1. Fall:

2x + π = 2,824

oder

2x + π = 2,824 +2π | - π
2x = 2,824 + π
2x = 5,9656 |:2
x1 = 2,9828

Am Einheitskreis erkennen wir, dass die Gleichung cos( 2x + π) = -0,95 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=-0.95 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 2,824
bzw. bei - 2,824 +2π= 3,459 liegen muss.

2. Fall:

2x + π = 3,459 | - π
2x = 3,459 - π
2x = 0,3174 |:2
x2 = 0,1587

L={ 0,1587 ; 2,9828 }

trigonometr. Nullprodukt-Gleichung

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
3 2 cos( x ) + sin( x ) · cos( x ) = 0

Lösung einblenden
3 2 cos( x ) + sin( x ) · cos( x ) = 0
1 2 ( 2 sin( x ) +3 ) · cos( x ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

2 sin( x ) +3 = 0 | -3
2 sin( x ) = -3 |:2
sin( x ) = -1,5

Diese Gleichung hat keine Lösung!


2. Fall:

canvas
cos( x ) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x1 = 1 2 π

Am Einheitskreis erkennen wir, dass die Gleichung cos( x ) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x2 = 3 2 π

L={ 1 2 π ; 3 2 π }

trigon. Gleichung (mit Substitution)

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Lösung einblenden
( sin( x ) ) 4 - 3 2 ( sin( x ) ) 2 + 1 2 = 0

Diese Gleichung kann durch Substitution auf eine quadratische Gleichung zurückgeführt werden!

Setze u = ( sin( x ) ) 2

Draus ergibt sich die quadratische Gleichung:

u 2 - 3 2 u + 1 2 = 0 |⋅ 2
2( u 2 - 3 2 u + 1 2 ) = 0

2 u 2 -3u +1 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

u1,2 = +3 ± ( -3 ) 2 -4 · 2 · 1 22

u1,2 = +3 ± 9 -8 4

u1,2 = +3 ± 1 4

u1 = 3 + 1 4 = 3 +1 4 = 4 4 = 1

u2 = 3 - 1 4 = 3 -1 4 = 2 4 = 0,5

Rücksubstitution:

u1: ( sin( x ) ) 2 = 1

( sin( x ) ) 2 = 1 | 2

1. Fall

sin( x ) = - 1 = -1
canvas
sin( x ) = -1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x1 = 3 2 π

2. Fall

sin( x ) = 1 = 1
canvas
sin( x ) = 1 |sin-1(⋅)

Am Einheitskreis erkennt man sofort:

x2 = 1 2 π

u2: ( sin( x ) ) 2 = 0,5

( sin( x ) ) 2 = 0,5 | 2

1. Fall

sin( x ) = - 0,5 -0,707
canvas
sin( x ) = -0,707 |sin-1(⋅)

Der WTR liefert nun als Wert -0.78524716339515

Weil dieser Wert negativ ist und wir aber Lösungen aus dem Intervall [0;p) suchen, addieren wir einfach noch 2π dazu und erhalten so 5,498

1. Fall:

x3 = 5,498

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = -0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=-0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 5,498 =-2.3564 bzw. bei -2.3564+2π= 3,927 liegen muss.

2. Fall:

x4 = 3,927

2. Fall

sin( x ) = 0,5 0,707
canvas
sin( x ) = 0,707 |sin-1(⋅)

Der WTR liefert nun als Wert 0.78524716339515

1. Fall:

x5 = 0,785

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,707 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.707 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,785 = 2,356 liegen muss.

2. Fall:

x6 = 2,356

L={ 0,785 ; 1 2 π ; 2,356 ; 3,927 ; 3 2 π ; 5,498 }

Trigonometrische Gleichungen (komplex) LF

Beispiel:

Bestimme alle Lösungen im Intervall [0; 2π ):
- cos( x - 3 2 π) · ( x -6 ) = 0

Lösung einblenden
- cos( x - 3 2 π) · ( x -6 ) = 0
- cos( x - 3 2 π) ( x -6 ) = 0
- ( x -6 ) · cos( x - 3 2 π) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x -6 = 0 | +6
x1 = 6

2. Fall:

canvas
cos( x - 3 2 π) = 0 |cos-1(⋅)

Am Einheitskreis erkennt man sofort:

1. Fall:

x - 3 2 π = 1 2 π

oder

x - 3 2 π = 1 2 π-2π
x - 3 2 π = - 3 2 π |⋅ 2
2( x - 3 2 π) = -3π
2x -3π = -3π | +3π
2x = 0 |:2
x2 = 0

Am Einheitskreis erkennen wir, dass die Gleichung cos( x - 3 2 π) = 0 noch eine weitere Lösung hat. (die senkrechte turkise Gerade x=0 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung einfach (nach unten gespiegelt) bei - 1 2 π
bzw. bei - 1 2 π +2π= 3 2 π liegen muss.

2. Fall:

x - 3 2 π = 3 2 π

oder

x - 3 2 π = 3 2 π-2π
x - 3 2 π = - 1 2 π |⋅ 2
2( x - 3 2 π) = -π
2x -3π = -π | +3π
2x = 2π |:2
x3 = π

L={0; π ; 6 }