Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Tipp: Skizziere zuerst den Graph von f auf einem Stück Papier.
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion lediglich in y-Richtung gestreckt wurde. Qualitativ unterscheiden sich die beiden Graphen also nicht.
Da bei zu jedem Funktionswert von noch -3 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 3 nach unten verschoben.
Daraus ergeben sich folgende Aussagen:
- Dadurch schneidet der Graph von f die x-Achse.
- Die Funktionswerte werden also immer größer, die Funktion ist also streng monoton wachsend.
- Für x → ∞ strebt gegen .
- Für x → - ∞ strebt gegen = .
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache (oder auf das -fache), also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 95% = 5 %
a und ein Funktionswert gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 8% abnimmt. 13 Jahre nach Beobachtungsbeginn werden nur noch 3,38 Millionen der Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 6 Jahren? b) Wann erwartet man nur noch 5,1 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Abnahme um 8% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 8% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,92 ⋅ B. Somit ist das a=0,92.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 13 Jahre der Bestand 3.38 Millionen Insekten ist, also f(13) = 3.38. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 0.9213 = 3.38
c ⋅ 0.33825 = 3.38 | : 0.33825
c = 10
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=6 Jahre, also f(6):
f(6) = ≈ 6,064.
zu b)
Hier wird gefragt, wann der Bestand = 5.1 Millionen Insekten ist, also f(t) = 5.1:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 8,076 Jahre ist also der Bestand = 5.1 Millionen Insekten.
