Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
2. Logarithmusgesetz einfach
Beispiel:
Vereinfache den Term zu einem Vielfachen von .
Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
=
=
=
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|), also gilt f(0)=.
In den allgemeinen Funktionsterm eingesezt bedeutet das: = = c ⋅ 1.
Dadurch wissen wir nun schon: c = , also .
Außerdem können wir den Punkt (1|) auf dem Graphen ablesen, also git f(1) = .
In unseren Funktionsterm eingesezt bedeutet das: = = .
Es gilt also: = | ⋅
4 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
In einem Land halbiert sich die Anzahl einer bestimmten Insektenart alle 5 Jahre. Zu Beginn der Beobachtung wurden 12 Millionen dieser Insekten geschätzt.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl in Milionen der Insekten in Millionen nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 12 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga().
Also 5 = loga(). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
c und a gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 12% vermehrt. Zu Beginn der Aufzeichnung registriert man 5000 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 4 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 45000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=5000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 12% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 12% dazukommen,
also Bneu
= B +
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=4 Wochen, also f(4):
f(4) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 45000 Nutzer ist, also f(t) = 45000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 19,388 Wochen ist also die Anzahl der Nutzer = 45000 Nutzer.
