Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Da wir nicht den Logarithmus zur Basis 16 sondern zur Basis
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann
niemals = 0 werden.2 k e 1 3 k x - 1 3 k - Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentianterm1 3 k x - 1 3 k recht schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote bei2 k e 1 3 k x - 1 3 k erkennen.- 1
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.1 3 k x - 1 3 k
Wenn wir nun1 3 k x - 1 3 k = 0 |⋅ 3 3 ( 1 3 k x - 1 3 k ) = 0 k x - k = 0 | - ( )- k k x = k |:( )k x = 1 in fk einsetzen erhalten wir folgende Gleichung:1
fk( ) =1 =2 k e 1 3 k ⋅ 1 - 1 3 k - 1 2 k - 1
im abgebildeten Term können wir aber ja f( ) = 4 ablesen, es gilt somit:1 2 k - 1 = 4 | + 1 2 k = 5 |: 2 k = = 2.55 2
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.954(
c und ein Funktionswert gegeben
Beispiel:
Von einem radioaktiven Element sind zu Beobachtungsbeginn 80kg vorhanden. Nach 8 Tagen nach sind nur noch 28,77kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 6 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 20kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=80 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 8 Tage der Bestand 28.77 kg ist,
also f(8) = 28.77. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=6 Tage, also f(6):
f(6) =
zu b)
Hier wird gefragt, wann der Bestand = 20 kg ist, also f(t) = 20:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 10,845 Tage ist also der Bestand = 20 kg.
