Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
1. Logarithmusgesetz einfach
Beispiel:
Vereinfache so, dass das Argument des Logarithmus möglichst einfach wird.
Es gilt mit dem Logarithmusgesetz log(a ⋅ b) = log(a) + log(b):
=
=
=
=
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann niemals = 0 werden.
- Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentianterm
recht
schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote bei
erkennen.
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.
Wenn wir nun in fk einsetzen erhalten wir folgende Gleichung:= 0 | - ( ) = |:( ) =
fk() = =
im abgebildeten Term können wir aber ja f() = -2 ablesen, es gilt somit:= | =
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Alle 3,2 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 1000 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 3.2 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
c und ein Funktionswert gegeben
Beispiel:
Bei einer Bakterienkultur geht man von exponentiellem Wachstum aus. Zu Beobachtungsbeginn umfasste die Kultur 16 Milionen Bakterien. 13 Stunden nach Beobachtungsbeginn sind es bereits 123,18Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 10 Stunden? b) Wann umfasst die Kultur 66 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=16 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 13 Stunden der Bestand 123.18 Millionen Bakterien ist,
also f(13) = 123.18. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
|
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Stunden, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann der Bestand = 66 Millionen Bakterien ist, also f(t) = 66:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 9,026 Stunden ist also der Bestand = 66 Millionen Bakterien.
