Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log im Interval bestimmen

Beispiel:

Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus log 3 (41) liegt.

Lösung einblenden

Wir suchen 3er-Potenzen in der Näher von 41, also eine die gerade noch kleiner und eine die schon größer als 41 ist.

Dabei kommt man auf 3 3 = 33 < 41 und auf 3 4 = 34 > 41.

Und da wir bei log 3 (41) ja das ☐ von 3 = 41 suchen, muss dieses ☐ irgendwo zwischen 3 und 4 liegen, wegen:
33 = 3 3 < 41 < 3 4 = 34

Es gilt somit: 3 < log 3 (41) < 4

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 1 2 x 2 ) + lg( 20 x 8 ) + lg( 1 40 x ) soweit wie möglich.

Lösung einblenden

- lg( 1 2 x 2 ) + lg( 20 x 8 ) + lg( 1 40 x )

= - lg( 1 2 x -2 ) + lg( 20 x -8 ) + lg( 1 40 x )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 1 2 ) + lg( 1 x 2 ) ) + ( lg( 20 ) + lg( 1 x 8 ) ) + ( lg( 1 40 ) + lg( x ) )

= - lg( 1 2 ) - lg( 1 x 2 ) + lg( 20 ) + lg( 1 x 8 ) + lg( 1 40 ) + lg( x )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 1 2 ) +2 lg( x ) + lg( 20 ) -8 lg( x ) + lg( 1 40 ) + lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 1 ) + lg( 2 ) +2 lg( x ) + lg( 20 ) -8 lg( x ) + lg( 1 ) - lg( 40 ) + lg( x )

= -5 lg( x ) - lg( 40 ) + lg( 20 ) + lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= -5 lg( x ) + lg( 1 40 · 20 · 2 )

= -5 lg( x ) + lg( 1 2 · 2 )

= -5 lg( x ) + lg( 1 )

= -5 lg( x )

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -4 e -0,1x -2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,1x ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,1x für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -4 vor e -0,1x wird e -0,1x an der x-Achse gespiegelt. Dadurch liegen bei -4 e -0,1x die Funktionswerte zwischen -∞ und 0.

Durch die -2 hinter dem -4 e -0,1x wird zu allen Funktionswerten von -4 e -0,1x noch -2 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y < -2}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-4 e -0,1x -2 = y | +2
-4 e -0,1x = y +2 |:-4
e -0,1x = - 1 4 y - 1 2 |ln(⋅)
-0,1x = ln( - 1 4 y - 1 2 ) |:-0,1
x = - 1 0,1 ln( - 1 4 y - 1 2 )
x = -10 ln( - 1 4 y - 1 2 )

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = -10 ln( - 1 4 x - 1 2 )

und erhalten so die Umkehrfunktion f - (x) = -10 ln( - 1 4 x - 1 2 )

Exponentialterm mit Halbwertszeit best.

Beispiel:

Bei einem Staat mit 90 Millionen Einwohner geht man davon aus, dass die Einwohnerzahl exponentiell abnimmt. Nach 22,8 Jahren hat sich die Bevölkerung halbiert?Bestimme den Funktionsterm der Exponentialfunktion, die die Einwohnerzahl in Millionen Einwohner nach t Jahren angibt.

Lösung einblenden

Von der allgemeinen Exponentialfunktion f(t)= c · a t können wir den Anfangswert c = 90 direkt der Aufgabe entnehmen.

Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga( 1 2 ).

Also 22.8 = loga( 1 2 ). Nach der Definition des Logarithmus ist dies gleichbedeutend mit

a 22,8 = 1 2 | 22,8
a1 = - ( 1 2 ) 1 22,8 -0,97
a2 = ( 1 2 ) 1 22,8 0,97

Das gesuchte a ist somit 0,97 ≈ 0.97, der gesuchte Funktionsterm f(t)= 90 0,97 t

c und ein Funktionswert gegeben

Beispiel:

Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 1000 Nutzer. Nach 8 Wochen zählt man bereits 2143,59 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 13 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 1500 angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=1000 kann man direkt aus der Aufgabe heraus lesen.

Somit wissen wir bereits, dass der Funktionsterm f(t)= 1000 a t mit einem Wachstumsfaktor a sein muss.

Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 8 Wochen der Bestand 2143.59 Nutzer ist, also f(8) = 2143.59. Dies setzen wir in unsern bisherigen Funktionterm f(t)= 1000 a t ein:

1000 a 8 = 2143,59 |:1000
a 8 = 2,14359 | 8
a1 = - 2,14359 8 = -1,1
a2 = 2,14359 8 = 1,1

Da der Wachstumsfaktor a immer positiv sein muss, ist a= 1,1 ≈ 1.1 die einzige sinnvolle Lösung.

Damit ergibt sich der Funktionsterm f(t)= 1000 1,1 t .

zu a)

Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=13 Wochen, also f(13):

f(13) = 1000 1,1 13 3452,271.

zu b)

Hier wird gefragt, wann die Anzahl der Nutzer = 1500 Nutzer ist, also f(t) = 1500:

1000 1,1 t = 1500 |:1000
1,1 t = 3 2 |lg(⋅)
lg( 1,1 t ) = lg( 3 2 )
t · lg( 1,1 ) = lg( 3 2 ) |: lg( 1,1 )
t = lg( 3 2 ) lg( 1,1 )
t = 4,2542

Nach ca. 4,254 Wochen ist also die Anzahl der Nutzer = 1500 Nutzer.