Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 25x ) + lg( 2 x 4 ) + lg( 1 5000 x 5 ) soweit wie möglich.

Lösung einblenden

lg( 25x ) + lg( 2 x 4 ) + lg( 1 5000 x 5 )

= lg( 25x ) + lg( 2 x 4 ) + lg( 1 5000 x -5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 25 ) + lg( x ) + ( lg( 2 ) + lg( x 4 ) ) + ( lg( 1 5000 ) + lg( 1 x 5 ) )

= lg( 25 ) + lg( x ) + lg( 2 ) + lg( x 4 ) + lg( 1 5000 ) + lg( 1 x 5 )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 25 ) + lg( x ) + lg( 2 ) +4 lg( x ) + lg( 1 5000 ) -5 lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 25 ) + lg( x ) + lg( 2 ) +4 lg( x ) + lg( 1 ) - lg( 5000 ) -5 lg( x )

= - lg( 5000 ) + lg( 25 ) + lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 1 5000 · 25 · 2 )

= lg( 1 100 )

= lg( 10 -2 )

= -2

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term - lg( 250 ) + lg( 50 x 4 ) + lg( 5x ) soweit wie möglich.

Lösung einblenden

- lg( 250 ) + lg( 50 x 4 ) + lg( 5x )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= -( lg( 250 ) + lg( 1 ) ) + ( lg( 50 ) + lg( x 4 ) ) + ( lg( 5 ) + lg( x ) )

= - lg( 250 ) - lg( 1 ) + lg( 50 ) + lg( x 4 ) + lg( 5 ) + lg( x )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= - lg( 250 ) +0 + lg( 50 ) +4 lg( x ) + lg( 5 ) + lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= - lg( 250 ) +0 + lg( 50 ) +4 lg( x ) + lg( 5 ) + lg( x )

= 5 lg( x ) - lg( 250 ) + lg( 50 ) + lg( 5 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= 5 lg( x ) + lg( 1 250 · 50 · 5 )

= 5 lg( x ) + lg( 1 5 · 5 )

= 5 lg( x ) + lg( 1 )

= 5 lg( x )

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= e 0,4x +2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,4x ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,4x für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch die +2 hinter dem e 0,4x wird zu allen Funktionswerten von e 0,4x noch 2 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y > 2}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

e 0,4x +2 = y | -2
e 0,4x = y -2 |ln(⋅)
0,4x = ln( y -2 ) |:0,4
x = 1 0,4 ln( y -2 )
x = 5 2 ln( y -2 )

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 5 2 ln( x -2 )

und erhalten so die Umkehrfunktion f - (x) = 5 2 ln( x -2 )

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Staat verliert jedes Jahr 2% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?

Lösung einblenden

Die prozentuale Abnahme um 2% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2% weggehen,
also Bneu = B - 2 100 ⋅B = (1 - 2 100 ) ⋅ B = 0,98 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,98.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.98( 1 2 ) ≈ 34.31 Jahre

a und ein Funktionswert gegeben

Beispiel:

Eine Bakterienkultur vermehrt sich stündlich um 29%. 5 Stunden nach Beobachtungsbeginn sind es bereits 67,87Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 12 Stunden? b) Wann umfasst die Kultur 419 Millionen Bakterien?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Zunahme um 29% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 29% dazukommen,
also Bneu = B + 29 100 ⋅B = (1 + 29 100 ) ⋅ B = 1,29 ⋅ B. Somit ist das a=1,29.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 1,29 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 5 Stunden der Bestand 67.87 Millionen Bakterien ist, also f(5) = 67.87. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 1,29 t ein:

c ⋅ 1.295 = 67.87

c ⋅ 3.57231 = 67.87 | : 3.57231

c = 19

Damit ergibt sich der Funktionsterm f(t)= 19 1,29 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=12 Stunden, also f(12):

f(12) = 19 1,29 12 403,488.

zu b)

Hier wird gefragt, wann der Bestand = 419 Millionen Bakterien ist, also f(t) = 419:

19 1,29 t = 419 |:19
1,29 t = 419 19 |lg(⋅)
lg( 1,29 t ) = lg( 419 19 )
t · lg( 1,29 ) = lg( 419 19 ) |: lg( 1,29 )
t = lg( 419 19 ) lg( 1,29 )
t = 12,1482

Nach ca. 12,148 Stunden ist also der Bestand = 419 Millionen Bakterien.