Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
2. Logarithmusgesetz einfach
Beispiel:
Vereinfache den Term zu einem Vielfachen von .
Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
=
=
=
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 140% - 100% = 40 %
a und ein Funktionswert gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 17% vermehrt. Nach 10 Wochen zählt man bereits 4806,83 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 8 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 1900 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 17% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 17% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,17 ⋅ B. Somit ist das a=1,17.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Wochen der Bestand 4806.83 Nutzer ist, also f(10) = 4806.83. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.1710 = 4806.83
c ⋅ 4.80683 = 4806.83 | : 4.80683
c = 1000
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=8 Wochen, also f(8):
f(8) = ≈ 3511,453.
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 1900 Nutzer ist, also f(t) = 1900:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 4,088 Wochen ist also die Anzahl der Nutzer = 1900 Nutzer.
