Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 100 ( 10 ) .

Lösung einblenden

Da wir nicht den Logarithmus zur Basis 10 sondern zur Basis 100 suchen und 100 gerade 10² ist (also 10 = 100 = 100 1 2 ), formen wir 10 noch so um, dass sie 100 als Basis hat:

10 = 100 1 2

log 100 ( 10 ) heißt, dass wir den Logarithmus von 10 = 100 1 2 zur Basis 100 suchen, also die Hochzahl mit der man 100 potenzieren muss, um auf 10 = 100 1 2 zu kommen.

Also was muss in das Kästchen, damit 100 = 10 = 100 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 100 ( 10 ) = log 100 ( 100 1 2 ) = 1 2 , eben weil 100 1 2 = 10 gilt .

Parameter mit Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist die Funktionenschar fk(x)= e 8 10 x + k +4 k . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.

Lösung einblenden

Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(

Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.

  • Hier kann man schnell erkennen, dass der Exponentialterm e 8 10 x + k niemals = 0 werden kann.
    Da jedoch der zweite Summand 4 k abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.
    Denn für x → -∞ strebt fk(x) → 0 + 4 k
    Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = -2, somit muss 4 k = -2 gelten;
    Also gilt k = - 1 2

Der abgebildete Graph ist somit der von f - 1 2

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -2 e -0,3x +0,3 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,3x +0,3 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,3x +0,3 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -2 vor e -0,3x +0,3 wird e -0,3x +0,3 an der x-Achse gespiegelt. Dadurch liegen bei -2 e -0,3x +0,3 die Funktionswerte zwischen -∞ und 0.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-2 e -0,3x +0,3 = y |:-2
e -0,3x +0,3 = - 1 2 y |ln(⋅)
-0,3x +0,3 = ln( - 1 2 y )
-0,3x +0,3 = ln( - 1 2 y ) | -0,3
-0,3x = ln( - 1 2 y ) -0,3 |:(-0,3 )
x = - 1 0,3 ln( - 1 2 y ) + 0,3 0,3

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = - 1 0,3 ln( - 1 2 x ) + 0,3 0,3

und erhalten so die Umkehrfunktion f - (x) = - 1 0,3 ln( - 1 2 x ) + 0,3 0,3

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Staat verliert jedes Jahr 5% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?

Lösung einblenden

Die prozentuale Abnahme um 5% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 5% weggehen,
also Bneu = B - 5 100 ⋅B = (1 - 5 100 ) ⋅ B = 0,95 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,95.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.95( 1 2 ) ≈ 13.51 Jahre

a und ein Funktionswert gegeben

Beispiel:

Ein Konto wird mit 6% verzinst. 8 Jahre nach dem das Konto eröffnet wurde, sind bereits 7969,24€ auf dem Konto. a) Wie hoch ist der Kontostand 12 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 8000€ angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Zunahme um 6% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 6% dazukommen,
also Bneu = B + 6 100 ⋅B = (1 + 6 100 ) ⋅ B = 1,06 ⋅ B. Somit ist das a=1,06.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 1,06 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 8 Jahre der Bestand 7969.24 € ist, also f(8) = 7969.24. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 1,06 t ein:

c ⋅ 1.068 = 7969.24

c ⋅ 1.59385 = 7969.24 | : 1.59385

c = 5000

Damit ergibt sich der Funktionsterm f(t)= 5000 1,06 t .

zu a)

Gesucht ist der Kontostand zum Zeitpunkt t=12 Jahre, also f(12):

f(12) = 5000 1,06 12 10060,982.

zu b)

Hier wird gefragt, wann der Kontostand = 8000 € ist, also f(t) = 8000:

5000 1,06 t = 8000 |:5000
1,06 t = 8 5 |lg(⋅)
lg( 1,06 t ) = lg( 8 5 )
t · lg( 1,06 ) = lg( 8 5 ) |: lg( 1,06 )
t = lg( 8 5 ) lg( 1,06 )
t = 8,0661

Nach ca. 8,066 Jahre ist also der Kontostand = 8000 €.