Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen

Beispiel:

Berechne den Logarithmus log 4 ( 1 16 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 16 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 1 16 zu kommen.

Also was muss in das Kästchen, damit 4 = 1 16 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 4-Potenz zu schreiben versuchen, also 4 = 1 16

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 ( 1 16 ) = -2, eben weil 4-2 = 1 16 gilt .

Beide Logarithmusgesetze

Beispiel:

Vereinfache den Term lg( 2 x 4 ) + lg( 5 x 5 ) - lg( 1000 x ) soweit wie möglich.

Lösung einblenden

lg( 2 x 4 ) + lg( 5 x 5 ) - lg( 1000 x )

= lg( 2 x 4 ) + lg( 5 x -5 ) - lg( 1000 x -1 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:

= lg( 2 ) + lg( x 4 ) + ( lg( 5 ) + lg( 1 x 5 ) ) - ( lg( 1000 ) + lg( 1 x ) )

= lg( 2 ) + lg( x 4 ) + lg( 5 ) + lg( 1 x 5 ) - lg( 1000 ) - lg( 1 x )

Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:

= lg( 2 ) +4 lg( x ) + lg( 5 ) -5 lg( x ) - lg( 1000 ) + lg( x )

Jetzt kann man mit dem 1. Logarithmusgesetz log( a b ) = log(a)- log(b) noch die Brüche im Logarithmus umformen:

= lg( 2 ) +4 lg( x ) + lg( 5 ) -5 lg( x ) - lg( 1000 ) + lg( x )

= - lg( 1000 ) + lg( 5 ) + lg( 2 )

Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:

= lg( 1 1000 · 5 · 2 )

= lg( 1 100 )

= lg( 10 -2 )

= -2

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= e -0,2x +1 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,2x ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,2x für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch die +1 hinter dem e -0,2x wird zu allen Funktionswerten von e -0,2x noch 1 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y > 1}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

e -0,2x +1 = y | -1
e -0,2x = y -1 |ln(⋅)
-0,2x = ln( y -1 ) |:-0,2
x = - 1 0,2 ln( y -1 )
x = -5 ln( y -1 )

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = -5 ln( x -1 )

und erhalten so die Umkehrfunktion f - (x) = -5 ln( x -1 )

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Staat verliert jedes Jahr 1% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?

Lösung einblenden

Die prozentuale Abnahme um 1% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 1% weggehen,
also Bneu = B - 1 100 ⋅B = (1 - 1 100 ) ⋅ B = 0,99 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,99.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.99( 1 2 ) ≈ 68.97 Jahre

c und a gegeben

Beispiel:

Eine Bakterienkultur vermehrt sich stündlich um 14%. Zu Beobachtungsbeginn umfasste die Kultur 7 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 11 Stunden? b) Wann umfasst die Kultur 27 Millionen Bakterien?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=7 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Zunahme um 14% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 14% dazukommen,
also Bneu = B + 14 100 ⋅B = (1 + 14 100 ) ⋅ B = 1,14 ⋅ B. Somit ist das a=1,14.

Damit ergibt sich der Funktionsterm f(t)= 7 1,14 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=11 Stunden, also f(11):

f(11) = 7 1,14 11 29,584.

zu b)

Hier wird gefragt, wann der Bestand = 27 Millionen Bakterien ist, also f(t) = 27:

7 1,14 t = 27 |:7
1,14 t = 27 7 |lg(⋅)
lg( 1,14 t ) = lg( 27 7 )
t · lg( 1,14 ) = lg( 27 7 ) |: lg( 1,14 )
t = lg( 27 7 ) lg( 1,14 )
t = 10,3026

Nach ca. 10,303 Stunden ist also der Bestand = 27 Millionen Bakterien.