Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


2. Logarithmusgesetz einfach

Beispiel:

Vereinfache den Term -2 lg( x ) zu einem Vielfachen von lg( x ) .

Lösung einblenden

Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
-2 lg( x )
= -2 lg( x 1 2 )
= - lg( x )
= - lg( x )

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0|-1), also gilt f(0)=-1.

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: -1 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = -1 , also f(x)= - a x .

Außerdem können wir den Punkt (1|-4) auf dem Graphen ablesen, also git f(1) = -4.

In unseren Funktionsterm f(x)= - a x eingesezt bedeutet das: -4 = -a = -a .

Es gilt also: -4 = -a | ⋅ -1

4 = a

Somit ist der Funtionsterm: f(x)= - 4 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= 3 e x -3 -1 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent x -3 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e x -3 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Auch mit dem positiven Koeffizienten 3 vor e x -3 können die Funktionswerte von 3 e x -3 alles zwischen 0 und ∞ annehmen.

Durch die -1 hinter dem 3 e x -3 wird zu allen Funktionswerten von 3 e x -3 noch -1 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y > -1}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

3 e x -3 -1 = y | +1
3 e x -3 = y +1 |:3
e x -3 = 1 3 y + 1 3 |ln(⋅)
x -3 = ln( 1 3 y + 1 3 )
x -3 = ln( 1 3 y + 1 3 ) | +3
x = ln( 1 3 y + 1 3 ) +3

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = ln( 1 3 x + 1 3 ) +3

und erhalten so die Umkehrfunktion f - (x) = ln( 1 3 x + 1 3 ) +3

Exponentialterm mit Halbwertszeit best.

Beispiel:

In einem Land halbiert sich die Anzahl einer bestimmten Insektenart alle 5 Jahre. Zu Beginn der Beobachtung wurden 12 Millionen dieser Insekten geschätzt.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl in Milionen der Insekten in Millionen nach t Jahren angibt.

Lösung einblenden

Von der allgemeinen Exponentialfunktion f(t)= c · a t können wir den Anfangswert c = 12 direkt der Aufgabe entnehmen.

Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga( 1 2 ).

Also 5 = loga( 1 2 ). Nach der Definition des Logarithmus ist dies gleichbedeutend mit

a 5 = 1 2 | 5
a = 1 2 5

Das gesuchte a ist somit 1 2 5 ≈ 0.87, der gesuchte Funktionsterm f(t)= 12 0,87 t

c und a gegeben

Beispiel:

Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 12% vermehrt. Zu Beginn der Aufzeichnung registriert man 5000 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 4 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 45000 angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=5000 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Zunahme um 12% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 12% dazukommen,
also Bneu = B + 12 100 ⋅B = (1 + 12 100 ) ⋅ B = 1,12 ⋅ B. Somit ist das a=1,12.

Damit ergibt sich der Funktionsterm f(t)= 5000 1,12 t .

zu a)

Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=4 Wochen, also f(4):

f(4) = 5000 1,12 4 7867,597.

zu b)

Hier wird gefragt, wann die Anzahl der Nutzer = 45000 Nutzer ist, also f(t) = 45000:

5000 1,12 t = 45000 |:5000
1,12 t = 9 |lg(⋅)
lg( 1,12 t ) = lg( 9 )
t · lg( 1,12 ) = lg( 9 ) |: lg( 1,12 )
t = lg( 9 ) lg( 1,12 )
t = 19,3881

Nach ca. 19,388 Wochen ist also die Anzahl der Nutzer = 45000 Nutzer.