Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|
In den allgemeinen Funktionsterm
Dadurch wissen wir nun schon: c =
Außerdem können wir den Punkt (1|
In unseren Funktionsterm
Es gilt also:
3 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein radioaktives Element verliert jeden Tag 12,5% seines Bestands. Bestimme die Halbwertszeit dieses radioaktives Elements.
Die prozentuale Abnahme um 12.5% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 12.5% weggehen,
also Bneu
= B -
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Halbwertszeit gilt: TH = loga(
Also TH = log0.875(
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 29%. 9 Stunden nach Beobachtungsbeginn sind es bereits 49,46Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 13 Stunden? b) Wann umfasst die Kultur 105 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Zunahme um 29% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 29% dazukommen,
also Bneu
= B +
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 9 Stunden der Bestand 49.46 Millionen Bakterien ist,
also f(9) = 49.46. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 1.299 = 49.46
c ⋅ 9.89253 = 49.46 | : 9.89253
c = 5
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Stunden, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 105 Millionen Bakterien ist, also f(t) = 105:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 11,956 Stunden ist also der Bestand = 105 Millionen Bakterien.
