Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
1. Logarithmusgesetz rückwärts
Beispiel:
Vereinfache: -
Jetzt wenden wir das Logarithmusgesetz log(
=
=
=
= 4
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Exponentialterm mit Halbwertszeit best.
Beispiel:
Von einem radioaktiven Element mit einer Halbwertszeit von 4,3 Jahren sind zu Beobachtungsbeginn 50kg vorhanden. Bestimme den Funktionsterm der Exponentialfunktion, die die Masse des radioaktiven Elements nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 4.3 = loga(
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Das gesuchte a ist somit
c und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 6000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 2 Jahren beträgt der Kontostand bereits 6615€. a) Wie hoch ist der Kontostand 8 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 11000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=6000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 2 Jahre der Bestand 6615 € ist,
also f(2) = 6615. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
=
|
| a2 | = |
|
=
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=8 Jahre, also f(8):
f(8) =
zu b)
Hier wird gefragt, wann der Kontostand = 11000 € ist, also f(t) = 11000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 12,423 Jahre ist also der Kontostand = 11000 €.
