Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn
= 0 ist, also für x = .
Dann muss ja der y-Wert fk() = = = sein.
Da bei x = bei ( ) auch das Vorzeichen wechselt, muss dieser Punkt P(| ) im abgebildeten Graph bei P(3| ) sein.
Für den x-Wert dieses Punkts P gilt somit = 3
Also gilt k =
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache (oder auf das -fache), also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 96% = 4 %
a und ein Funktionswert gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 17% vermehrt. Nach 4 Wochen zählt man bereits 5621,66 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 6 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 5000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 17% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 17% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,17 ⋅ B. Somit ist das a=1,17.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 4 Wochen der Bestand 5621.66 Nutzer ist, also f(4) = 5621.66. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.174 = 5621.66
c ⋅ 1.87389 = 5621.66 | : 1.87389
c = 3000
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=6 Wochen, also f(6):
f(6) = ≈ 7695,493.
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 5000 Nutzer ist, also f(t) = 5000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 3,254 Wochen ist also die Anzahl der Nutzer = 5000 Nutzer.
