Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = = =
Wenn man das mit f(x) =
=
vergleicht, kann man erkennen, dass f(-x) =
weder gleich f(x) =
noch gleich -f(x) =
=
ist.
Wir können dies ja auch anhand eines Gegenbeispiels nachweisen:
f(1) =
=
≈ 3.718
Aber: f(-1) =
=
≈ 1.718
Es gilt also: f(-x) ≠ f(x) und f(-x) ≠ -f(x)
Somit liegt bei f keine Symmetrie zum KoSy vor.
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Konto wird mit 1,8% verzinst.Bestimme die Zeit bis sich der Kontostand verdoppelt hat.
Die prozentuale Zunahme um 1.8% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 1.8% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,018 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=1,018.
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.018() ≈ 38.85 Jahre
c und ein Funktionswert gegeben
Beispiel:
Von einem radioaktiven Element sind zu Beobachtungsbeginn 80kg vorhanden. Nach 10 Tagen nach sind nur noch 27,89kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 5 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 60kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=80 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm mit einem Wachstumsfaktor a sein muss.
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 10 Tage der Bestand 27.89 kg ist, also f(10) = 27.89. Dies setzen wir in unsern bisherigen Funktionterm ein:
| = | |: | ||
| = | | | ||
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=5 Tage, also f(5):
f(5) =
zu b)
Hier wird gefragt, wann der Bestand = 60 kg ist, also f(t) = 60:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 2,731 Tage ist also der Bestand = 60 kg.
