Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
1. Logarithmusgesetz rückwärts
Beispiel:
Vereinfache: + .
+
Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:
=
=
=
= 6
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Da das k ja ein fester Wert ist, kann niemals = 0 werden.
- Wenn der Exponent
jedoch betragsmäßig sehr große und negative Werte annimmt, strebt der Exponentianterm
recht
schnell gegen 0. Das lässt sich auch gut in der waagrechten Assymtote bei
erkennen.
Dieser zweite Summand ist aber unabhängig von k, so dass uns die Lage der Asymptote keinen Anhaltspunkt für den Wert von k gibt. - Wir müssen also den Exponent
= 0 bekommen, um einen präzise ablebaren Punkt auf dem Graph zu bekommen.
Wenn wir nun in fk einsetzen erhalten wir folgende Gleichung:= 0 | - ( ) = |:( ) =
fk() = =
im abgebildeten Term können wir aber ja f() = 0 ablesen, es gilt somit:= 0 | = |: = = -0.5
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Ein Konto wird mit 7000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 23,4 Jahren hat sich der der Kontostand verdoppelt. Bestimme den Funktionsterm der Exponentialfunktion, die den Kontostand nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 7000 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 23.4 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
a und ein Funktionswert gegeben
Beispiel:
In einem Land hat man festgestellt, dass die Anzahl einer bestimmten Insektenart jedes Jahr um 7% abnimmt. 13 Jahre nach Beobachtungsbeginn werden nur noch 5,06 Millionen der Insekten geschätzt. a) Wie viele Millionen der Insekten gibt es in dem Land noch nach 6 Jahren? b) Wann erwartet man nur noch 10,5 Millionen dieser Insekten?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 7% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 7% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 13 Jahre der Bestand 5.06 Millionen Insekten ist,
also f(13) = 5.06. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.9313 = 5.06
c ⋅ 0.38929 = 5.06 | : 0.38929
c = 13
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=6 Jahre, also f(6):
f(6) =
zu b)
Hier wird gefragt, wann der Bestand = 10.5 Millionen Insekten ist, also f(t) = 10.5:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 2,943 Jahre ist also der Bestand = 10.5 Millionen Insekten.
