Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Tipp: Skizziere zuerst den Graph von f auf einem Stück Papier.
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei das x von durch ein -x ersetzt wurde, wird der Graph von gegenüber dem der natürlichen Exponentialfunktion an der y-Achse gespiegelt.
Da bei zu jedem Funktionswert von noch 1 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 1 nach oben verschoben.
Da bei
das x von
durch ein 'x
Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben also >0, der Graph verläuft somit komplett über der x-Achse.
- Die Funktionswerte werden also immer kleiner, die Funktion ist also streng monoton fallend.
- Für x → ∞ strebt gegen = .
- Für x → - ∞ strebt gegen .
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|), also gilt f(0)=.
In den allgemeinen Funktionsterm eingesezt bedeutet das: = = c ⋅ 1.
Dadurch wissen wir nun schon: c = , also .
Außerdem können wir den Punkt (1|) auf dem Graphen ablesen, also git f(1) = .
In unseren Funktionsterm eingesezt bedeutet das: = = .
Es gilt also: = | ⋅
3 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein radioaktives Element verliert jeden Tag 11,5% seines Bestands. Bestimme die Halbwertszeit dieses radioaktives Elements.
Die prozentuale Abnahme um 11.5% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 11.5% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,885 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=0,885.
Mit der Formel für die Halbwertszeit gilt: TH = loga().
Also TH = log0.885() ≈ 5.67 Tage
a und ein Funktionswert gegeben
Beispiel:
Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 19% vermehrt. Nach 8 Wochen zählt man bereits 12064,16 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 6 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 23000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 19% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 19% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,19 ⋅ B. Somit ist das a=1,19.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 8 Wochen der Bestand 12064.16 Nutzer ist, also f(8) = 12064.16. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.198 = 12064.16
c ⋅ 4.02139 = 12064.16 | : 4.02139
c = 3000
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=6 Wochen, also f(6):
f(6) = ≈ 8519,283.
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 23000 Nutzer ist, also f(t) = 23000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 11,709 Wochen ist also die Anzahl der Nutzer = 23000 Nutzer.
