Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein Staat verliert jedes Jahr 2% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?
Die prozentuale Abnahme um 2% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,98 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=0,98.
Mit der Formel für die Halbwertszeit gilt: TH = loga().
Also TH = log0.98() ≈ 34.31 Jahre
a und ein Funktionswert gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 29%. 5 Stunden nach Beobachtungsbeginn sind es bereits 67,87Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 12 Stunden? b) Wann umfasst die Kultur 419 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 29% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 29% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,29 ⋅ B. Somit ist das a=1,29.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 5 Stunden der Bestand 67.87 Millionen Bakterien ist, also f(5) = 67.87. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.295 = 67.87
c ⋅ 3.57231 = 67.87 | : 3.57231
c = 19
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=12 Stunden, also f(12):
f(12) = ≈ 403,488.
zu b)
Hier wird gefragt, wann der Bestand = 419 Millionen Bakterien ist, also f(t) = 419:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 12,148 Stunden ist also der Bestand = 419 Millionen Bakterien.
