Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Tipp: Skizziere zuerst den Graph von f auf einem Stück Papier.
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion lediglich in y-Richtung gestreckt wurde. Qualitativ unterscheiden sich die beiden Graphen also nicht.
Da bei zu jedem Funktionswert von noch -2 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 2 nach unten verschoben.
Da bei
das x von
durch ein 'x
Daraus ergeben sich folgende Aussagen:
- Dadurch schneidet der Graph von f die x-Achse.
- Die Funktionswerte werden also immer größer, die Funktion ist also streng monoton wachsend.
- Für x → ∞ strebt gegen .
- Für x → - ∞ strebt gegen = .
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|), also gilt f(0)=.
In den allgemeinen Funktionsterm eingesezt bedeutet das: = = c ⋅ 1.
Dadurch wissen wir nun schon: c = , also .
Außerdem können wir den Punkt (1|) auf dem Graphen ablesen, also git f(1) = .
In unseren Funktionsterm eingesezt bedeutet das: = = .
Es gilt also: = | ⋅
3 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Ein Konto wird mit 8000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 23,4 Jahren hat sich der der Kontostand verdoppelt. Bestimme den Funktionsterm der Exponentialfunktion, die den Kontostand nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 8000 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 23.4 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
c und ein Funktionswert gegeben
Beispiel:
Von einem radioaktiven Element sind zu Beobachtungsbeginn 10kg vorhanden. Nach 10 Tagen nach sind nur noch 8,17kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 11 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 8,2kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=10 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 10 Tage der Bestand 8.17 kg ist,
also f(10) = 8.17. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=11 Tage, also f(11):
f(11) =
zu b)
Hier wird gefragt, wann der Bestand = 8.2 kg ist, also f(t) = 8.2:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 9,823 Tage ist also der Bestand = 8.2 kg.
