Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 9 ( 1 3 ) .

Lösung einblenden

Zuerst schreiben wir 1 3 um: 1 3 = 3 -1

Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis 9 suchen und 9 gerade 3² ist (also 3 = 9 = 9 1 2 ), formen wir 3 -1 noch so um, dass sie 9 als Basis hat:

3 -1 = ( 9 1 2 ) -1 = 9 - 1 2

log 9 ( 1 3 ) = log 9 ( 3 -1 ) heißt, dass wir den Logarithmus von 3 -1 = 9 - 1 2 zur Basis 9 suchen, also die Hochzahl mit der man 9 potenzieren muss, um auf 3 -1 = 9 - 1 2 zu kommen.

Also was muss in das Kästchen, damit 9 = 3 -1 = 9 - 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 9 ( 1 3 ) = log 9 ( 3 -1 ) = log 9 ( 9 - 1 2 ) = - 1 2 , eben weil 9 - 1 2 = 1 3 gilt .

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| 1 2 ), also gilt f(0)= 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = 1 2 , also f(x)= 1 2 a x .

Außerdem können wir den Punkt (1|1) auf dem Graphen ablesen, also git f(1) = 1.

In unseren Funktionsterm f(x)= 1 2 a x eingesezt bedeutet das: 1 = 1 2 a = 1 2 a .

Es gilt also: 1 = 1 2 a | ⋅ 2

2 = a

Somit ist der Funtionsterm: f(x)= 1 2 2 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= e 0,4x -0,4 -2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,4x -0,4 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,4x -0,4 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch die -2 hinter dem e 0,4x -0,4 wird zu allen Funktionswerten von e 0,4x -0,4 noch -2 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y > -2}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

e 0,4x -0,4 -2 = y | +2
e 0,4x -0,4 = y +2 |ln(⋅)
0,4x -0,4 = ln( y +2 )
0,4x -0,4 = ln( y +2 ) | +0,4
0,4x = ln( y +2 ) +0,4 |:0,4
x = 1 0,4 ln( y +2 ) + 0,4 0,4

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 1 0,4 ln( x +2 ) + 0,4 0,4

und erhalten so die Umkehrfunktion f - (x) = 1 0,4 ln( x +2 ) + 0,4 0,4

Exponentialterm mit Halbwertszeit best.

Beispiel:

Von einem radioaktiven Element mit einer Halbwertszeit von 11,2 Jahren sind zu Beobachtungsbeginn 40kg vorhanden. Bestimme den Funktionsterm der Exponentialfunktion, die die Masse des radioaktiven Elements nach t Jahren angibt.

Lösung einblenden

Von der allgemeinen Exponentialfunktion f(t)= c · a t können wir den Anfangswert c = 40 direkt der Aufgabe entnehmen.

Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga( 1 2 ).

Also 11.2 = loga( 1 2 ). Nach der Definition des Logarithmus ist dies gleichbedeutend mit

a 11,2 = 1 2 | 11,2
a = ( 1 2 ) 1 11,2

Das gesuchte a ist somit ( 1 2 ) 1 11,2 ≈ 0.94, der gesuchte Funktionsterm f(t)= 40 0,94 t

c und a gegeben

Beispiel:

Ein radioaktives Element verliert jeden Tag 12% seines Bestands. Zu Beginn sind 60kg dieses Elements vorhanden. a) Wie viel kg des Elements sind noch nach 13 Tagen da? b) Wann sind nur noch 10kg vorhanden?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=60 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Abnahme um 12% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 12% weggehen,
also Bneu = B - 12 100 ⋅B = (1 - 12 100 ) ⋅ B = 0,88 ⋅ B. Somit ist das a=0,88.

Damit ergibt sich der Funktionsterm f(t)= 60 0,88 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=13 Tage, also f(13):

f(13) = 60 0,88 13 11,387.

zu b)

Hier wird gefragt, wann der Bestand = 10 kg ist, also f(t) = 10:

60 0,88 t = 10 |:60
0,88 t = 1 6 |lg(⋅)
lg( 0,88 t ) = lg( 1 6 )
t · lg( 0,88 ) = lg( 1 6 ) |: lg( 0,88 )
t = lg( 1 6 ) lg( 0,88 )
t = 14,0164

Nach ca. 14,016 Tage ist also der Bestand = 10 kg.