Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 2 ( 2 ) .

Lösung einblenden

Zuerst schreiben wir 2 um: 2 = 2 1 2

log 2 ( 2 ) = log 2 ( 2 1 2 ) heißt, dass wir den Logarithmus von 2 1 2 zur Basis 2 suchen, also die Hochzahl mit der man 2 potenzieren muss, um auf 2 1 2 zu kommen.

Also was muss in das Kästchen, damit 2 = 2 1 2 gilt.

Damit steht die Lösung praktisch schon da: log 2 ( 2 ) = log 2 ( 2 1 2 ) = 1 2 , eben weil 2 1 2 = 2 gilt .

Parameter mit Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist die Funktionenschar fk(x)= - ( x + k ) · e x + 1 2 k -1 . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.

Lösung einblenden

Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(

Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.

  • Man kann schnell erkennen, dass der Exponentialterm - ( x + k ) · e x + 1 2 k = 0 wird, wenn x + k = 0 ist, also für x = -1 k .
    Dann muss ja der y-Wert fk(-1 k ) = - ( ( -1 k ) + k ) · e ( -1 k ) + 1 2 k -1 = 0 -1 = -1 sein.
    Da bei x = -1 k bei ( x + k ) auch das Vorzeichen wechselt, muss dieser Punkt P(-1 k | -1 ) im abgebildeten Graph bei P(1| -1 ) sein.
    Für den x-Wert dieses Punkts P gilt somit -1 k = 1
    Also gilt k = -1

Der abgebildete Graph ist somit der von f-1

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -4 e x -1 +1 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent x -1 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e x -1 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -4 vor e x -1 wird e x -1 an der x-Achse gespiegelt. Dadurch liegen bei -4 e x -1 die Funktionswerte zwischen -∞ und 0.

Durch die +1 hinter dem -4 e x -1 wird zu allen Funktionswerten von -4 e x -1 noch 1 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y < 1}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-4 e x -1 +1 = y | -1
-4 e x -1 = y -1 |:-4
e x -1 = - 1 4 y + 1 4 |ln(⋅)
x -1 = ln( - 1 4 y + 1 4 )
x -1 = ln( - 1 4 y + 1 4 ) | +1
x = ln( - 1 4 y + 1 4 ) +1

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = ln( - 1 4 x + 1 4 ) +1

und erhalten so die Umkehrfunktion f - (x) = ln( - 1 4 x + 1 4 ) +1

Exponentialterm mit Halbwertszeit best.

Beispiel:

Bei einem Staat mit 10 Millionen Einwohner geht man davon aus, dass die Einwohnerzahl exponentiell abnimmt. Nach 22,8 Jahren hat sich die Bevölkerung halbiert?Bestimme den Funktionsterm der Exponentialfunktion, die die Einwohnerzahl in Millionen Einwohner nach t Jahren angibt.

Lösung einblenden

Von der allgemeinen Exponentialfunktion f(t)= c · a t können wir den Anfangswert c = 10 direkt der Aufgabe entnehmen.

Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga( 1 2 ).

Also 22.8 = loga( 1 2 ). Nach der Definition des Logarithmus ist dies gleichbedeutend mit

a 22,8 = 1 2 | 22,8
a1 = - ( 1 2 ) 1 22,8 -0,97
a2 = ( 1 2 ) 1 22,8 0,97

Das gesuchte a ist somit 0,97 ≈ 0.97, der gesuchte Funktionsterm f(t)= 10 0,97 t

c und ein Funktionswert gegeben

Beispiel:

Ein Konto wird mit 2000€ eröffnet und wird mit einem festen Zinssatz verzinst. Nach 10 Jahren beträgt der Kontostand bereits 2687,83€. a) Wie hoch ist der Kontostand 13 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 2900€ angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=2000 kann man direkt aus der Aufgabe heraus lesen.

Somit wissen wir bereits, dass der Funktionsterm f(t)= 2000 a t mit einem Wachstumsfaktor a sein muss.

Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 10 Jahre der Bestand 2687.83 € ist, also f(10) = 2687.83. Dies setzen wir in unsern bisherigen Funktionterm f(t)= 2000 a t ein:

2000 a 10 = 2687,83 |:2000
a 10 = 1,34392 | 10
a1 = - 1,34392 10 = -1,03
a2 = 1,34392 10 = 1,03

Da der Wachstumsfaktor a immer positiv sein muss, ist a= 1,03 ≈ 1.03 die einzige sinnvolle Lösung.

Damit ergibt sich der Funktionsterm f(t)= 2000 1,03 t .

zu a)

Gesucht ist der Kontostand zum Zeitpunkt t=13 Jahre, also f(13):

f(13) = 2000 1,03 13 2937,067.

zu b)

Hier wird gefragt, wann der Kontostand = 2900 € ist, also f(t) = 2900:

2000 1,03 t = 2900 |:2000
1,03 t = 29 20 |lg(⋅)
lg( 1,03 t ) = lg( 29 20 )
t · lg( 1,03 ) = lg( 29 20 ) |: lg( 1,03 )
t = lg( 29 20 ) lg( 1,03 )
t = 12,5703

Nach ca. 12,57 Jahre ist also der Kontostand = 2900 €.