Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Da wir nicht den Logarithmus zur Basis 3 sondern zur Basis
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|
In den allgemeinen Funktionsterm
Dadurch wissen wir nun schon: c =
Außerdem können wir den Punkt (1|
In unseren Funktionsterm
Es gilt also:
2 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Exponentialterm mit Halbwertszeit best.
Beispiel:
Von einem radioaktiven Element mit einer Halbwertszeit von 11,2 Jahren sind zu Beobachtungsbeginn 40kg vorhanden. Bestimme den Funktionsterm der Exponentialfunktion, die die Masse des radioaktiven Elements nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga(
Also 11.2 = loga(
|
|
= | |
|
|
|
|
= |
|
Das gesuchte a ist somit
c und a gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 12% seines Bestands. Zu Beginn sind 60kg dieses Elements vorhanden. a) Wie viel kg des Elements sind noch nach 13 Tagen da? b) Wann sind nur noch 10kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=60 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 12% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 12% weggehen,
also Bneu
= B -
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Tage, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 10 kg ist, also f(t) = 10:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 14,016 Tage ist also der Bestand = 10 kg.
