Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Hier kann man schnell erkennen, dass der Exponentialterm
niemals = 0 werden kann.- e - 8 10 x + 2 k
Da jedoch der zweite Summand abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.4 k
Denn für x → +∞ strebt fk(x) → 0 +4 k
Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = -2, somit muss = -2 gelten;4 k
Also gilt k =- 1 2
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Zunahme beträgt also 145% - 100% = 45 %
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 14% seines Bestands. 8 Tage nach Beobachtungsbeginn sind nur noch 2,99kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 4 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 1,4kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 14% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 14% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 8 Tage der Bestand 2.99 kg ist,
also f(8) = 2.99. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.868 = 2.99
c ⋅ 0.29922 = 2.99 | : 0.29922
c = 10
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=4 Tage, also f(4):
f(4) =
zu b)
Hier wird gefragt, wann der Bestand = 1.4 kg ist, also f(t) = 1.4:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 13,036 Tage ist also der Bestand = 1.4 kg.
