Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log im Interval bestimmen
Beispiel:
Finde zwei benachbarte ganze Zahlen, zwischen denen der Logarithmus liegt.
Wir suchen
Dabei kommt man auf
Und da wir bei
23 =
Es gilt somit: 3 <
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|
In den allgemeinen Funktionsterm
Dadurch wissen wir nun schon: c =
Außerdem können wir den Punkt (1|
In unseren Funktionsterm
Es gilt also:
4 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Abnahme beträgt also 100% - 60% = 40 %
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 10% seines Bestands. 8 Tage nach Beobachtungsbeginn sind nur noch 12,91kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 10 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 10kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 10% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 10% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 8 Tage der Bestand 12.91 kg ist,
also f(8) = 12.91. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.98 = 12.91
c ⋅ 0.43047 = 12.91 | : 0.43047
c = 30
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Tage, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann der Bestand = 10 kg ist, also f(t) = 10:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 10,427 Tage ist also der Bestand = 10 kg.
