Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Am Koeffizient vor dem erkennen wir, dass der Graph gegenüber dem der natürlichen Exponentialfunktion lediglich in y-Richtung gestreckt wurde. Qualitativ unterscheiden sich die beiden Graphen also nicht.
Da bei zu jedem Funktionswert von noch 2 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 2 nach oben verschoben.
Da bei
das x von
durch ein 'x
Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben also >0, der Graph verläuft somit komplett über der x-Achse.
- Die Funktionswerte werden also immer größer, die Funktion ist also streng monoton wachsend.
- Für x → ∞ strebt gegen .
- Für x → - ∞ strebt gegen = .
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Hier kann man schnell erkennen, dass der Exponentialterm
niemals = 0 werden kann.
Da jedoch der zweite Summand abhängig von k ist, Kann man über die Asymptote den Parameter k bestimmen.
Denn für x → -∞ strebt fk(x) → 0 +
Aus dem Schaubild erkennt man eine waagrechte Asymptote bei y = 3, somit muss = 3 gelten;
Also gilt k =
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Bei einer Bakterienkultur geht davon aus, dass sie sich innerhalb von 3 Stunden verdoppelt. Zu Beobachtungsbeginn umfasste die Kultur 18 Milionen Bakterien. Bestimme den Funktionsterm der Exponentialfunktion, die die Bakterienanzahl in Milionen nach t Stunden angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 18 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 3 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
|
|
= |
|
Das gesuchte a ist somit
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 11%. Zu Beobachtungsbeginn umfasste die Kultur 29 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 10 Stunden? b) Wann umfasst die Kultur 229 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=29 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 11% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 11% dazukommen,
also Bneu
= B +
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Stunden, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann der Bestand = 229 Millionen Bakterien ist, also f(t) = 229:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 19,801 Stunden ist also der Bestand = 229 Millionen Bakterien.
