Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Eigenschaften von e-Funktionen

Beispiel:

Welche Eigenschaften hat die Funktion f mit f(x)= e x +2 -2 .

Tipp: Skizziere zuerst den Graph von f auf einem Stück Papier.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= e x (im Schaubild in schwarzer Farbe eingezeichnet).

Da bei e x +2 -2 zu jedem Funktionswert von e x noch -2 addiert wird, ist der Graph von e x +2 -2 gegenüber dem der natürlichen Exponentialfunktion, um 2 nach unten verschoben.

Da bei e x +2 -2 das x von e x durch ein 'x+2' ersetzt wurde, wird der Graph der natürlichen Exponentialfunktion um -2 in x-Richtung verschoben .

Daraus ergeben sich folgende Aussagen:

  • Dadurch schneidet der Graph von f die x-Achse.
  • Die Funktionswerte werden also immer größer, die Funktion ist also streng monoton wachsend.
  • Für x → ∞ strebt e x +2 -2 gegen .
  • Für x → - ∞ strebt e x +2 -2 gegen 0 -2 = -2 .

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0|-2), also gilt f(0)=-2.

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: -2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = -2 , also f(x)= -2 a x .

Außerdem können wir den Punkt (1|-4) auf dem Graphen ablesen, also git f(1) = -4.

In unseren Funktionsterm f(x)= -2 a x eingesezt bedeutet das: -4 = -2a = -2a .

Es gilt also: -4 = -2a | ⋅ - 1 2

2 = a

Somit ist der Funtionsterm: f(x)= -2 2 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -4 e -0,3x -1 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent -0,3x ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e -0,3x für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -4 vor e -0,3x wird e -0,3x an der x-Achse gespiegelt. Dadurch liegen bei -4 e -0,3x die Funktionswerte zwischen -∞ und 0.

Durch die -1 hinter dem -4 e -0,3x wird zu allen Funktionswerten von -4 e -0,3x noch -1 addiert. Dadurch verschiebt sich auch der Wertebereich zu W = {y ∈ ℝ | y < -1}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-4 e -0,3x -1 = y | +1
-4 e -0,3x = y +1 |:-4
e -0,3x = - 1 4 y - 1 4 |ln(⋅)
-0,3x = ln( - 1 4 y - 1 4 ) |:-0,3
x = - 1 0,3 ln( - 1 4 y - 1 4 )
x = - 10 3 ln( - 1 4 y - 1 4 )

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = - 10 3 ln( - 1 4 x - 1 4 )

und erhalten so die Umkehrfunktion f - (x) = - 10 3 ln( - 1 4 x - 1 4 )

prozentale Änderung bestimmen

Beispiel:

Gib für die exponentielle Wachstumsfunktion f mit f(t)= 89 0,75 t die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?

Lösung einblenden

f(0) = 89

f(1) = 89 0,75

f(2) = 89 0,750,75

f(3) = 89 0,750,750,75

f(4) = 89 0,750,750,750,75

...

Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit 0,75 multipliziert. Da 0,75 < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das 0,75-fache, also auf 75 % des vorherigen Funktionswertes.

Die prozentuale Abnahme beträgt also 100% - 75% = 25 %

c und a gegeben

Beispiel:

Eine Bakterienkultur vermehrt sich stündlich um 5%. Zu Beobachtungsbeginn umfasste die Kultur 2 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 11 Stunden? b) Wann umfasst die Kultur 3 Millionen Bakterien?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=2 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Zunahme um 5% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 5% dazukommen,
also Bneu = B + 5 100 ⋅B = (1 + 5 100 ) ⋅ B = 1,05 ⋅ B. Somit ist das a=1,05.

Damit ergibt sich der Funktionsterm f(t)= 2 1,05 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=11 Stunden, also f(11):

f(11) = 2 1,05 11 3,421.

zu b)

Hier wird gefragt, wann der Bestand = 3 Millionen Bakterien ist, also f(t) = 3:

2 1,05 t = 3 |:2
1,05 t = 3 2 |lg(⋅)
lg( 1,05 t ) = lg( 3 2 )
t · lg( 1,05 ) = lg( 3 2 ) |: lg( 1,05 )
t = lg( 3 2 ) lg( 1,05 )
t = 8,3104

Nach ca. 8,31 Stunden ist also der Bestand = 3 Millionen Bakterien.