Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
1. Logarithmusgesetz rückwärts
Beispiel:
Vereinfache: - .
-
Jetzt wenden wir das Logarithmusgesetz log() = log(a) - log(b) rückwärts an:
=
=
= 1
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Exponentialterm mit Halbwertszeit best.
Beispiel:
Von einem radioaktiven Element mit einer Halbwertszeit von 6,6 Jahren sind zu Beobachtungsbeginn 100kg vorhanden. Bestimme den Funktionsterm der Exponentialfunktion, die die Masse des radioaktiven Elements nach t Jahren angibt.
Von der allgemeinen Exponentialfunktion können wir den Anfangswert c = 100 direkt der Aufgabe entnehmen.
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Halbwertszeit: TH = loga().
Also 6.6 = loga(). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
| = | | | ||
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Das gesuchte a ist somit
c und ein Funktionswert gegeben
Beispiel:
Bei der Anzahl der Nutzer einer Internetseite kann man von exponentiellem Wachstum ausgehen. Zu Beginn der Aufzeichnung registriert man 3000 Nutzer. Nach 3 Wochen zählt man bereits 5582,6 Nutzer.a) Wie hoch ist nach diesem Modell die Anzahl der Nutzer nach 6 Wochen? b) Nach wie vielen Wochen ist die Anzahl der Nutzer auf 43000 angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=3000 kann man direkt aus der Aufgabe heraus lesen.
Somit wissen wir bereits, dass der Funktionsterm
Der Wachstumsfaktor a ist zwar nicht gegeben, wir wissen aber, dass nach 3 Wochen der Bestand 5582.6 Nutzer ist,
also f(3) = 5582.6. Dies setzen wir in unsern bisherigen Funktionterm
|
|
= | |: |
|
|
|
= | |
|
|
|
|
= |
|
Da der Wachstumsfaktor a immer positiv sein muss, ist a=
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist die Anzahl der Nutzer zum Zeitpunkt t=6 Wochen, also f(6):
f(6) =
zu b)
Hier wird gefragt, wann die Anzahl der Nutzer = 43000 Nutzer ist, also f(t) = 43000:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 12,862 Wochen ist also die Anzahl der Nutzer = 43000 Nutzer.
