Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Man kann erkennen, dass
Also schreiben wir
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.k x · e k x + k
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|-3) gut erkennen. Es gilt folglich.
fk( ) =0 =k · 0 · e k ⋅ 0 + k + 3 k = -33 k 3 k = - 3 |: 3 k = - 1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|: |
|
|
= | |ln(⋅) | |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit
f(0) =
f(1) =
f(2) =
f(3) =
f(4) =
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit
Die prozentuale Abnahme beträgt also 100% - 65% = 35 %
c und a gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 7% seines Bestands. Zu Beginn sind 30kg dieses Elements vorhanden. a) Wie viel kg des Elements sind noch nach 13 Tagen da? b) Wann sind nur noch 10kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=30 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 7% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 7% weggehen,
also Bneu
= B -
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Tage, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 10 kg ist, also f(t) = 10:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 15,139 Tage ist also der Bestand = 10 kg.
