Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (schwer)
Beispiel:
Berechne den Logarithmus .
Zuerst schreiben wir
Man kann erkennen, dass
Also schreiben wir
Also was muss in das Kästchen, damit
Damit steht die Lösung praktisch schon da:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn- ( x - k ) · e x - 1 2 k = 0 ist, also für x =x - k .k
Dann muss ja der y-Wert fk( ) =k =- ( ( k ) - k ) · e ( k ) - 1 2 k + 2 =0 + 2 sein.2
Da bei x = bei (k ) auch das Vorzeichen wechselt, muss dieser Punkt P(x - k |k ) im abgebildeten Graph bei P(1|2 ) sein.2
Für den x-Wert dieses Punkts P gilt somit = 1k
Also gilt k =1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 14%. Bestimme die Zeit bis sich die Größe der Bakterienkultur verdoppelt hat.
Die prozentuale Zunahme um 14% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 14% dazukommen,
also Bneu
= B +
Somit gilt für den Wachstumsfaktor a (in
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.14(
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 14%. Zu Beobachtungsbeginn umfasste die Kultur 9 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 6 Stunden? b) Wann umfasst die Kultur 49 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=9 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 14% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 14% dazukommen,
also Bneu
= B +
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=6 Stunden, also f(6):
f(6) =
zu b)
Hier wird gefragt, wann der Bestand = 49 Millionen Bakterien ist, also f(t) = 49:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 12,933 Stunden ist also der Bestand = 49 Millionen Bakterien.
