Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
2. Logarithmusgesetz einfach
Beispiel:
Vereinfache den Term zu einem Vielfachen von .
Es gilt mit dem Logarithmusgesetz log(ab) = b⋅log(a):
=
=
=
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|), also gilt f(0)=.
In den allgemeinen Funktionsterm eingesezt bedeutet das: = = c ⋅ 1.
Dadurch wissen wir nun schon: c = , also .
Außerdem können wir den Punkt (1|) auf dem Graphen ablesen, also git f(1) = .
In unseren Funktionsterm eingesezt bedeutet das: = = .
Es gilt also: =
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 135% - 100% = 35 %
a und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 4% verzinst. 10 Jahre nach dem das Konto eröffnet wurde, sind bereits 7401,22€ auf dem Konto. a) Wie hoch ist der Kontostand 9 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 8000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 4% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 4% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,04 ⋅ B. Somit ist das a=1,04.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 10 Jahre der Bestand 7401.22 € ist, also f(10) = 7401.22. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.0410 = 7401.22
c ⋅ 1.48024 = 7401.22 | : 1.48024
c = 5000
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=9 Jahre, also f(9):
f(9) = ≈ 7116,559.
zu b)
Hier wird gefragt, wann der Kontostand = 8000 € ist, also f(t) = 8000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 11,984 Jahre ist also der Kontostand = 8000 €.
