Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei zu jedem Funktionswert von noch 2 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 2 nach oben verschoben.
Da bei
das x von
durch ein 'x
Daraus ergeben sich folgende Aussagen:
- Alle Funktionswerte bleiben also >0, der Graph verläuft somit komplett über der x-Achse.
- Die Funktionswerte werden also immer größer, die Funktion ist also streng monoton wachsend.
- Für x → ∞ strebt gegen .
- Für x → - ∞ strebt gegen = .
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit (Anwendung)
Beispiel:
Ein radioaktives Element verliert jeden Tag 5,7% seines Bestands. Bestimme die Halbwertszeit dieses radioaktives Elements.
Die prozentuale Abnahme um 5.7% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 5.7% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,943 ⋅ B.
Somit gilt für den Wachstumsfaktor a (in ): a=0,943.
Mit der Formel für die Halbwertszeit gilt: TH = loga().
Also TH = log0.943() ≈ 11.81 Tage
c und a gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 10% seines Bestands. Zu Beginn sind 80kg dieses Elements vorhanden. a) Wie viel kg des Elements sind noch nach 6 Tagen da? b) Wann sind nur noch 20kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=80 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Abnahme um 10% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 10% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,9 ⋅ B. Somit ist das a=0,9.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=6 Tage, also f(6):
f(6) = ≈ 42,515.
zu b)
Hier wird gefragt, wann der Bestand = 20 kg ist, also f(t) = 20:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 13,158 Tage ist also der Bestand = 20 kg.
