Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen (schwer)

Beispiel:

Berechne den Logarithmus log 10 ( 1 100000 ) .

Lösung einblenden

Zuerst schreiben wir 1 100000 um: 1 100000 = 100000 - 1 2

Man kann erkennen, dass 100000 eine Potenz ist: 100000 = 10 5

Also schreiben wir 1 100000 = 100000 - 1 2 = ( 10 5 ) - 1 2 = 10 - 5 2

log 10 ( 1 100000 ) = log 10 ( 10 - 5 2 ) heißt, dass wir den Logarithmus von 10 - 5 2 zur Basis 10 suchen, also die Hochzahl mit der man 10 potenzieren muss, um auf 10 - 5 2 zu kommen.

Also was muss in das Kästchen, damit 10 = 10 - 5 2 gilt.

Damit steht die Lösung praktisch schon da: log 10 ( 1 100000 ) = log 10 ( 10 - 5 2 ) = - 5 2 , eben weil 10 - 5 2 = 1 100000 gilt .

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0|-1), also gilt f(0)=-1.

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: -1 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = -1 , also f(x)= - a x .

Außerdem können wir den Punkt (1|-4) auf dem Graphen ablesen, also git f(1) = -4.

In unseren Funktionsterm f(x)= - a x eingesezt bedeutet das: -4 = -a = -a .

Es gilt also: -4 = -a | ⋅ -1

4 = a

Somit ist der Funtionsterm: f(x)= - 4 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= 4 e 0,4x -0,8 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,4x -0,8 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,4x -0,8 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Auch mit dem positiven Koeffizienten 4 vor e 0,4x -0,8 können die Funktionswerte von 4 e 0,4x -0,8 alles zwischen 0 und ∞ annehmen.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

4 e 0,4x -0,8 = y |:4
e 0,4x -0,8 = 1 4 y |ln(⋅)
0,4x -0,8 = ln( 1 4 y )
0,4x -0,8 = ln( 1 4 y ) | +0,8
0,4x = ln( 1 4 y ) +0,8 |:0,4
x = 1 0,4 ln( 1 4 y ) + 0,8 0,4

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 1 0,4 ln( 1 4 x ) + 0,8 0,4

und erhalten so die Umkehrfunktion f - (x) = 1 0,4 ln( 1 4 x ) + 0,8 0,4

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Ein Staat verliert jedes Jahr 3% seiner Bevölkerung. Wann hat sich die Bevölkerung halbiert?

Lösung einblenden

Die prozentuale Abnahme um 3% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 3% weggehen,
also Bneu = B - 3 100 ⋅B = (1 - 3 100 ) ⋅ B = 0,97 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=0,97.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.97( 1 2 ) ≈ 22.76 Jahre

a und ein Funktionswert gegeben

Beispiel:

Ein Konto wird mit 7% verzinst. 2 Jahre nach dem das Konto eröffnet wurde, sind bereits 4579,6€ auf dem Konto. a) Wie hoch ist der Kontostand 4 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 11000€ angewachsen?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Zunahme um 7% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 7% dazukommen,
also Bneu = B + 7 100 ⋅B = (1 + 7 100 ) ⋅ B = 1,07 ⋅ B. Somit ist das a=1,07.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 1,07 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 2 Jahre der Bestand 4579.6 € ist, also f(2) = 4579.6. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 1,07 t ein:

c ⋅ 1.072 = 4579.6

c ⋅ 1.1449 = 4579.6 | : 1.1449

c = 4000

Damit ergibt sich der Funktionsterm f(t)= 4000 1,07 t .

zu a)

Gesucht ist der Kontostand zum Zeitpunkt t=4 Jahre, also f(4):

f(4) = 4000 1,07 4 5243,184.

zu b)

Hier wird gefragt, wann der Kontostand = 11000 € ist, also f(t) = 11000:

4000 1,07 t = 11000 |:4000
1,07 t = 11 4 |lg(⋅)
lg( 1,07 t ) = lg( 11 4 )
t · lg( 1,07 ) = lg( 11 4 ) |: lg( 1,07 )
t = lg( 11 4 ) lg( 1,07 )
t = 14,9515

Nach ca. 14,952 Jahre ist also der Kontostand = 11000 €.