Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


1. Logarithmusgesetz rückwärts

Beispiel:

Vereinfache: lg( 40000 ) + lg( 25 ) .

Lösung einblenden

lg( 40000 ) + lg( 25 )

Jetzt wenden wir das Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts an:

= lg( 40000 · 25 )

= lg( 1000000 )

= lg( 10 6 )

= 6

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| - 1 2 ), also gilt f(0)= - 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: - 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = - 1 2 , also f(x)= - 1 2 a x .

Außerdem können wir den Punkt (1| - 3 2 ) auf dem Graphen ablesen, also git f(1) = - 3 2 .

In unseren Funktionsterm f(x)= - 1 2 a x eingesezt bedeutet das: - 3 2 = - 1 2 a = - 1 2 a .

Es gilt also: - 3 2 = - 1 2 a | ⋅ -2

3 = a

Somit ist der Funtionsterm: f(x)= - 1 2 3 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= 2 e 0,2x -0,2 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,2x -0,2 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,2x -0,2 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Auch mit dem positiven Koeffizienten 2 vor e 0,2x -0,2 können die Funktionswerte von 2 e 0,2x -0,2 alles zwischen 0 und ∞ annehmen.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

2 e 0,2x -0,2 = y |:2
e 0,2x -0,2 = 1 2 y |ln(⋅)
0,2x -0,2 = ln( 1 2 y )
0,2x -0,2 = ln( 1 2 y ) | +0,2
0,2x = ln( 1 2 y ) +0,2 |:0,2
x = 1 0,2 ln( 1 2 y ) + 0,2 0,2

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 1 0,2 ln( 1 2 x ) + 0,2 0,2

und erhalten so die Umkehrfunktion f - (x) = 1 0,2 ln( 1 2 x ) + 0,2 0,2

Halbwerts-/Verdoppl.-Zeit bestimmen

Beispiel:

Gegeben ist der Exponentialfunktion f mit f(t)= c · 0,85 t mit unbekanntem Anfangswert c.

Bestimme die Halbwertszeit.

Lösung einblenden

Den Wachstumsfaktor a kann direkt aus dem Funktionterm f(t)= c · 0,85 t ablesen: a=0.85.

Mit der Formel für die Halbwertszeit gilt: TH = loga( 1 2 ).

Also TH = log0.85( 1 2 ) ≈ 4.27 (Zeiteinheiten)

c und a gegeben

Beispiel:

Ein Staat verliert jedes Jahr 3,4% seiner Bevölkerung. Zu Beobachtungsbeginn hat das Land 65 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 11 Jahren? b) Wann hat das Land nur noch 45 Millionen Einwohner?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Den Anfangswert f(0)=c=65 kann man direkt aus der Aufgabe heraus lesen.

Die prozentuale Abnahme um 3.4% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 3.4% weggehen,
also Bneu = B - 3.4 100 ⋅B = (1 - 3.4 100 ) ⋅ B = 0,966 ⋅ B. Somit ist das a=0,966.

Damit ergibt sich der Funktionsterm f(t)= 65 0,966 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=11 Jahre, also f(11):

f(11) = 65 0,966 11 44,429.

zu b)

Hier wird gefragt, wann der Bestand = 45 Millionen Einwohner ist, also f(t) = 45:

65 0,966 t = 45 |:65
0,966 t = 9 13 |lg(⋅)
lg( 0,966 t ) = lg( 9 13 )
t · lg( 0,966 ) = lg( 9 13 ) |: lg( 0,966 )
t = lg( 9 13 ) lg( 0,966 )
t = 10,6305

Nach ca. 10,631 Jahre ist also der Bestand = 45 Millionen Einwohner.