Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen (einfach)
Beispiel:
Berechne den Logarithmus .
Wir suchen den Logarithmus von
Also was muss in das Kästchen, damit
Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn- ( x + 2 k ) · e x + k = 0 ist, also für x =x + 2 k .- 2 k
Dann muss ja der y-Wert fk( ) =- 2 k =- ( ( - 2 k ) + 2 k ) · e ( - 2 k ) + k - 3 =0 - 3 sein.- 3
Da bei x = bei (- 2 k ) auch das Vorzeichen wechselt, muss dieser Punkt P(x + 2 k |- 2 k ) im abgebildeten Graph bei P(1|- 3 ) sein.- 3
Für den x-Wert dieses Punkts P gilt somit = 1- 2 k
Also gilt k =- 1 2
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Auch mit dem positiven Koeffizienten
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y > 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|: |
|
|
= | |ln(⋅) | |
|
|
= |
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Exponentialterm mit Halbwertszeit best.
Beispiel:
Alle 4,7 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 5000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 4.7 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
|
= | |
|
|
| a1 | = |
|
≈
|
| a2 | = |
|
≈
|
Das gesuchte a ist somit
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 17%. Zu Beobachtungsbeginn umfasste die Kultur 9 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 10 Stunden? b) Wann umfasst die Kultur 69 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Den Anfangswert f(0)=c=9 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 17% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 17% dazukommen,
also Bneu
= B +
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Stunden, also f(10):
f(10) =
zu b)
Hier wird gefragt, wann der Bestand = 69 Millionen Bakterien ist, also f(t) = 69:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 12,974 Stunden ist also der Bestand = 69 Millionen Bakterien.
