Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
1. Logarithmusgesetz rückwärts
Beispiel:
Vereinfache: - .
-
Jetzt wenden wir das Logarithmusgesetz log() = log(a) - log(b) rückwärts an:
=
=
=
= -1
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|5) gut erkennen. Es gilt folglich.
fk() = = = 5= |: = = 2.5
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | |: | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |:() | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 65% = 35 %
c und a gegeben
Beispiel:
Ein Konto wird mit 3% verzinst. Zu Beginn sind 3000€ auf dem Konto. a) Wie hoch ist der Kontostand nach 5 Jahren? b) Wann ist der Kontostand auf 4000€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=3000 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 3% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 3% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,03 ⋅ B. Somit ist das a=1,03.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=5 Jahre, also f(5):
f(5) = ≈ 3477,822.
zu b)
Hier wird gefragt, wann der Kontostand = 4000 € ist, also f(t) = 4000:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 9,733 Jahre ist also der Kontostand = 4000 €.
