Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
log berechnen
Beispiel:
Berechne den Logarithmus .
Wir suchen den Logarithmus von
Also was muss in das Kästchen, damit
An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag
des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als
Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass der Exponentialterm
= 0 wird, wenn- ( x + k ) · e x + 1 2 k = 0 ist, also für x =x + k .- 1 k
Dann muss ja der y-Wert fk( ) =- 1 k =- ( ( - 1 k ) + k ) · e ( - 1 k ) + 1 2 k - 2 =0 - 2 sein.- 2
Da bei x = bei (- 1 k ) auch das Vorzeichen wechselt, muss dieser Punkt P(x + k |- 1 k ) im abgebildeten Graph bei P(1|- 2 ) sein.- 2
Für den x-Wert dieses Punkts P gilt somit = 1- 1 k
Also gilt k =- 1
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c=
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent
Wir wissen, dass
Durch den negativen Koeffizienten
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
|ln(⋅) |
|
|
= |
|
|: |
|
|
= |
|
|
|
|
= |
|
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion
Exponentialterm mit Halbwertszeit best.
Beispiel:
Alle 3,3 Wochen verdoppelt sich die Anzahl der Nutzer einer Internetseite. Zu Beginn der Aufzeichnung registriert man 2000 Nutzer.Bestimme den Funktionsterm der Exponentialfunktion, die die Anzahl der Nutzer nach t Wochen angibt.
Von der allgemeinen Exponentialfunktion
Um nun noch den Wachstumsfaktor a zu bestimmen, nutzen wir die Formel für die Verdopplungszeit: TV = loga(2).
Also 3.3 = loga(2). Nach der Definition des Logarithmus ist dies gleichbedeutend mit
|
|
= | |
|
|
|
|
= |
|
Das gesuchte a ist somit
a und ein Funktionswert gegeben
Beispiel:
Ein radioaktives Element verliert jeden Tag 3% seines Bestands. 2 Tage nach Beobachtungsbeginn sind nur noch 37,64kg dieses Elements vorhanden. a) Wie viel kg des Elements sind 13 Tage nach Beobachtungsbeginn vorhanden? b) Wann sind nur noch 30kg vorhanden?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form
Die prozentuale Abnahme um 3% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 3% weggehen,
also Bneu
= B -
Somit wissen wir bereits, dass der Funktionsterm
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 2 Tage der Bestand 37.64 kg ist,
also f(2) = 37.64. Dies setzen wir in unsern bisherigen Funktionterm
c ⋅ 0.972 = 37.64
c ⋅ 0.9409 = 37.64 | : 0.9409
c = 40
Damit ergibt sich der Funktionsterm
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=13 Tage, also f(13):
f(13) =
zu b)
Hier wird gefragt, wann der Bestand = 30 kg ist, also f(t) = 30:
|
|
= | |: |
|
|
|
= | |lg(⋅) | |
|
|
= |
|
|
|
|
= |
|
|:
|
|
|
= |
|
|
|
= |
|
Nach ca. 9,445 Tage ist also der Bestand = 30 kg.
