Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Eigenschaften von e-Funktionen
Beispiel:
Welche Eigenschaften hat die Funktion f mit f(x)= .
Als erstes erinnern wir uns an die natürliche Exponentialfunktion f0(x)= (im Schaubild in schwarzer Farbe eingezeichnet).
Da bei das x von durch ein -x ersetzt wurde, wird der Graph von gegenüber dem der natürlichen Exponentialfunktion an der y-Achse gespiegelt.
Da bei zu jedem Funktionswert von noch -3 addiert wird, ist der Graph von gegenüber dem der natürlichen Exponentialfunktion, um 3 nach unten verschoben.
Daraus ergeben sich folgende Aussagen:
- Dadurch schneidet der Graph von f die x-Achse.
- Die Funktionswerte werden also immer kleiner, die Funktion ist also streng monoton fallend.
- Für x → ∞ strebt gegen = .
- Für x → - ∞ strebt gegen .
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|), also gilt f(0)=.
In den allgemeinen Funktionsterm eingesezt bedeutet das: = = c ⋅ 1.
Dadurch wissen wir nun schon: c = , also .
Außerdem können wir den Punkt (1|) auf dem Graphen ablesen, also git f(1) = .
In unseren Funktionsterm eingesezt bedeutet das: = = .
Es gilt also: = | ⋅
4 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch den negativen Koeffizienten vor wird an der x-Achse gespiegelt. Dadurch liegen bei die Funktionswerte zwischen -∞ und 0.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
= | | | ||
= | |: | ||
= | |ln(⋅) | ||
= |
= | | | ||
= |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da < 1 ist, werden die Funktionswerte mit jedem Zeitschritt kleiner, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Abnahme beträgt also 100% - 55% = 45 %
a und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 3% verzinst. 6 Jahre nach dem das Konto eröffnet wurde, sind bereits 4776,21€ auf dem Konto. a) Wie hoch ist der Kontostand 4 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 4900€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 3% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 3% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,03 ⋅ B. Somit ist das a=1,03.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 6 Jahre der Bestand 4776.21 € ist, also f(6) = 4776.21. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.036 = 4776.21
c ⋅ 1.19405 = 4776.21 | : 1.19405
c = 4000
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=4 Jahre, also f(4):
f(4) = ≈ 4502,035.
zu b)
Hier wird gefragt, wann der Kontostand = 4900 € ist, also f(t) = 4900:
= | |: | ||
= | |lg(⋅) | ||
= | |||
= | |: | ||
= |
= |
Nach ca. 6,866 Jahre ist also der Kontostand = 4900 €.