Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = = =
Wenn man das mit f(x) =
=
vergleicht, kann man erkennen, dass f(-x) =
weder gleich f(x) =
noch gleich -f(x) =
=
ist.
Wir können dies ja auch anhand eines Gegenbeispiels nachweisen:
f(1) =
=
≈ 3.718
Aber: f(-1) =
=
≈ 1.718
Es gilt also: f(-x) ≠ f(x) und f(-x) ≠ -f(x)
Somit liegt bei f keine Symmetrie zum KoSy vor.
Term aus Graph bestimmen
Beispiel:
Bestimme den Funktionsterm der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.
Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.
Der Graph schneidet die y-Achse im Punkt (0|), also gilt f(0)=.
In den allgemeinen Funktionsterm eingesezt bedeutet das: = = c ⋅ 1.
Dadurch wissen wir nun schon: c = , also .
Außerdem können wir den Punkt (1|) auf dem Graphen ablesen, also git f(1) = .
In unseren Funktionsterm eingesezt bedeutet das: = = .
Es gilt also: = | ⋅
2 = a
Somit ist der Funtionsterm:
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
prozentale Änderung bestimmen
Beispiel:
Gib für die exponentielle Wachstumsfunktion f mit die prozentuale Änderung pro Zeiteinheit an. Handelt es sich um prozentuale Zunahme oder um prozentuale Abnahme?
f(0) =
f(1) = ⋅
f(2) = ⋅ ⋅
f(3) = ⋅ ⋅ ⋅
f(4) = ⋅ ⋅ ⋅ ⋅
...
Mit jeder Zeiteinheit wird also der bisherige Funktionswert mit multipliziert. Da > 1 ist, werden die Funktionswerte mit jedem Zeitschritt größer, und zwar auf das -fache, also auf % des vorherigen Funktionswertes.
Die prozentuale Zunahme beträgt also 120% - 100% = 20 %
c und a gegeben
Beispiel:
Eine Bakterienkultur vermehrt sich stündlich um 2%. Zu Beobachtungsbeginn umfasste die Kultur 24 Milionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 10 Stunden? b) Wann umfasst die Kultur 29,8 Millionen Bakterien?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Den Anfangswert f(0)=c=24 kann man direkt aus der Aufgabe heraus lesen.
Die prozentuale Zunahme um 2% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 2% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,02 ⋅ B. Somit ist das a=1,02.
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=10 Stunden, also f(10):
f(10) = ≈ 29,256.
zu b)
Hier wird gefragt, wann der Bestand = 29.8 Millionen Bakterien ist, also f(t) = 29.8:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 10,932 Stunden ist also der Bestand = 29.8 Millionen Bakterien.
