Aufgabenbeispiele von Exponentialfunktionen / Logarithmen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


log berechnen

Beispiel:

Berechne den Logarithmus log 4 ( 1 16 ) .

Lösung einblenden

Wir suchen den Logarithmus von 1 16 zur Basis 4, also die Hochzahl mit der man 4 potenzieren muss, um auf 1 16 zu kommen.

Also was muss in das Kästchen, damit 4 = 1 16 gilt.

An dem Bruch mit der 1 im Zähler kann man schnell erkennen, dass die Hochzahl negativ sein muss. Um auf den Betrag des gesuchten Exponenten zu kommen, können wir auch zuerst mal nur den Nenner als 4-Potenz zu schreiben versuchen, also 4 = 1 16

Aus der Erinnerung an die Potenzrechnung oder durch systematisches Probieren kommt man auf die Lösung:

log 4 ( 1 16 ) = -2, eben weil 4-2 = 1 16 gilt .

Term aus Graph bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme den Funktionsterm c · a x der Exponentialfunktion f deren Graph im Schaubild abgebildetet ist.

Tipp: Betrachte dazu den Graph an den Stellen x=0 und x=1.

Lösung einblenden

Der Graph schneidet die y-Achse im Punkt (0| - 1 2 ), also gilt f(0)= - 1 2 .

In den allgemeinen Funktionsterm f(x)= c · a x eingesezt bedeutet das: - 1 2 = c · a 0 = c ⋅ 1.

Dadurch wissen wir nun schon: c = - 1 2 , also f(x)= - 1 2 a x .

Außerdem können wir den Punkt (1| - 3 2 ) auf dem Graphen ablesen, also git f(1) = - 3 2 .

In unseren Funktionsterm f(x)= - 1 2 a x eingesezt bedeutet das: - 3 2 = - 1 2 a = - 1 2 a .

Es gilt also: - 3 2 = - 1 2 a | ⋅ -2

3 = a

Somit ist der Funtionsterm: f(x)= - 1 2 3 x

Umkehrfunktion von e- und ln-Funkt'n

Beispiel:

Die Funktion f mit f(x)= -4 e 0,2x -0,6 ist auf ihrer maximalen Definitionsmenge umkehrbar.

Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion f - .

Lösung einblenden

Maximale Definitionsmenge von f

Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= 1 e c )

Für die maximale Definitionsmenge gilt somit: D = ℝ

Wertemenge von f

Der Exponent 0,2x -0,6 ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.

Wir wissen, dass e 0,2x -0,6 für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.

Durch den negativen Koeffizienten -4 vor e 0,2x -0,6 wird e 0,2x -0,6 an der x-Achse gespiegelt. Dadurch liegen bei -4 e 0,2x -0,6 die Funktionswerte zwischen -∞ und 0.

Somit ist der Wertebereich von f: W = {y ∈ ℝ | y < 0}

Umkehrfunktion

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:

-4 e 0,2x -0,6 = y |:-4
e 0,2x -0,6 = - 1 4 y |ln(⋅)
0,2x -0,6 = ln( - 1 4 y )
0,2x -0,6 = ln( - 1 4 y ) | +0,6
0,2x = ln( - 1 4 y ) +0,6 |:0,2
x = 1 0,2 ln( - 1 4 y ) + 0,6 0,2

Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:

y = 1 0,2 ln( - 1 4 x ) + 0,6 0,2

und erhalten so die Umkehrfunktion f - (x) = 1 0,2 ln( - 1 4 x ) + 0,6 0,2

Halbwerts-/Verdoppl.-Zeit (Anwendung)

Beispiel:

Bei einer Internetseite kann man davon ausgehen, dass sich die Anzahl der Nutzer wöchentlich um 17% vermehrt. Wie lange braucht es, bis sich die Nutzerzahl verdoppelt hat?

Lösung einblenden

Die prozentuale Zunahme um 17% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 17% dazukommen,
also Bneu = B + 17 100 ⋅B = (1 + 17 100 ) ⋅ B = 1,17 ⋅ B.

Somit gilt für den Wachstumsfaktor a (in f(t)= c · a t ): a=1,17.

Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).

Also TV = log1.17(2) ≈ 4.41 Wochen

a und ein Funktionswert gegeben

Beispiel:

Eine Bakterienkultur vermehrt sich stündlich um 11%. 13 Stunden nach Beobachtungsbeginn sind es bereits 100,97Millionen Bakterien.a) Wie viel Millionen Bakterien hat die Bakterienkultur nach 7 Stunden? b) Wann umfasst die Kultur 46 Millionen Bakterien?

Lösung einblenden

Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form f(t)= c · a t sein.

Die prozentuale Zunahme um 11% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 11% dazukommen,
also Bneu = B + 11 100 ⋅B = (1 + 11 100 ) ⋅ B = 1,11 ⋅ B. Somit ist das a=1,11.

Somit wissen wir bereits, dass der Funktionsterm f(t)= c · 1,11 t mit einem Anfangswert c sein muss.

Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 13 Stunden der Bestand 100.97 Millionen Bakterien ist, also f(13) = 100.97. Dies setzen wir in unsern bisherigen Funktionterm f(t)= c · 1,11 t ein:

c ⋅ 1.1113 = 100.97

c ⋅ 3.88328 = 100.97 | : 3.88328

c = 26

Damit ergibt sich der Funktionsterm f(t)= 26 1,11 t .

zu a)

Gesucht ist der Bestand zum Zeitpunkt t=7 Stunden, also f(7):

f(7) = 26 1,11 7 53,98.

zu b)

Hier wird gefragt, wann der Bestand = 46 Millionen Bakterien ist, also f(t) = 46:

26 1,11 t = 46 |:26
1,11 t = 23 13 |lg(⋅)
lg( 1,11 t ) = lg( 23 13 )
t · lg( 1,11 ) = lg( 23 13 ) |: lg( 1,11 )
t = lg( 23 13 ) lg( 1,11 )
t = 5,4671

Nach ca. 5,467 Stunden ist also der Bestand = 46 Millionen Bakterien.