Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Symmetrie e-Funktionen
Beispiel:
Entscheide welche Symmetrie bei der Funktion f mit vorliegt.
Wir betrachten einfach f(-x) und schauen dann, ob das zufällig wieder f(x) oder -f(x) ist:
f(-x) = =
Wenn man das mit f(x) =
vergleicht, kann man erkennen, dass f(-x) =
weder gleich f(x) =
noch gleich -f(x) =
=
ist.
Wir können dies ja auch anhand eines Gegenbeispiels nachweisen:
f(1) =
=
≈ 7.389
Aber: f(-1) =
=
≈ -1
Es gilt also: f(-x) ≠ f(x) und f(-x) ≠ -f(x)
Somit liegt bei f keine Symmetrie zum KoSy vor.
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|-1) gut erkennen. Es gilt folglich.
fk() = = = -1=
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Auch mit dem positiven Koeffizienten vor können die Funktionswerte von alles zwischen 0 und ∞ annehmen.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |: | ||
| = | |ln(⋅) | ||
| = | |: | ||
| = | |||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit mit unbekanntem Anfangswert c.
Bestimme die Halbwertszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm ablesen: a=0.938.
Mit der Formel für die Halbwertszeit gilt: TH = loga().
Also TH = log0.938() ≈ 10.83 (Zeiteinheiten)
a und ein Funktionswert gegeben
Beispiel:
Ein Konto wird mit 5% verzinst. 6 Jahre nach dem das Konto eröffnet wurde, sind bereits 1340,1€ auf dem Konto. a) Wie hoch ist der Kontostand 4 Jahre nach der Kontoeröffnung? b) Wann ist der Kontostand auf 1400€ angewachsen?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Zunahme um 5% bedeutet ja, dass mit jedem Zeitschritt zum alten Bestand noch 5% dazukommen,
also Bneu
= B + ⋅B = (1 + ) ⋅ B = 1,05 ⋅ B. Somit ist das a=1,05.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 6 Jahre der Bestand 1340.1 € ist, also f(6) = 1340.1. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 1.056 = 1340.1
c ⋅ 1.3401 = 1340.1 | : 1.3401
c = 1000
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Kontostand zum Zeitpunkt t=4 Jahre, also f(4):
f(4) = ≈ 1215,506.
zu b)
Hier wird gefragt, wann der Kontostand = 1400 € ist, also f(t) = 1400:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 6,896 Jahre ist also der Kontostand = 1400 €.
