Aufgabenbeispiele von Exponentialfunktionen / Logarithmen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Beide Logarithmusgesetze
Beispiel:
Vereinfache den Term soweit wie möglich.
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) umformen zu:
=
=
Jetzt kann man mit dem 2. Logarithmusgesetz log(ab) = b⋅log(a) umformen zu:
=
Jetzt kann man mit dem 1. Logarithmusgesetz log() = log(a)- log(b) noch die Brüche im Logarithmus umformen:
=
=
Jetzt kann man mit dem 1. Logarithmusgesetz log(a ⋅ b) = log(a) + log(b) rückwärts umformen zu:
=
=
=
=
Parameter mit Graph bestimmen
Beispiel:
Gegeben ist die Funktionenschar . Die Abbildung rechts zeigt den Graph von fk für ein bestimmtes k. Bestimme dieses k.
Das Problem bei e-Funktionen ist ja, dass wir normale Funktionswerte sehr schwer berechnen und dann nur sehr ungenau ablesen können :(
Die einzigen Möglichkeiten gut ablesbare Werte zu finden, ist also dort, wo der Exponentialterm (annähernd) = 0 ist - oder eben =1 ist, weil dort der Exponent =0 ist.
- Man kann schnell erkennen, dass für x = 0 der Exponentialterm
= 0 wird.
Am abgebildeten Graph kann man den y-Achsenabschnitt Sy(0|-3) gut erkennen. Es gilt folglich.
fk() = = = -3= |: =
Der abgebildete Graph ist somit der von f
Umkehrfunktion von e- und ln-Funkt'n
Beispiel:
Die Funktion f mit ist auf ihrer maximalen Definitionsmenge umkehrbar.
Bestimme die maximale Definitionsmenge und die Wertemenge von f sowie einen Term für die Umkehrfunktion .
Maximale Definitionsmenge von f
Bei einer Exponentialfunktion kann man alle Werte für x einsetzen. (e0=1; e-c= )
Für die maximale Definitionsmenge gilt somit: D = ℝ
Wertemenge von f
Der Exponent ist eine lineare Funktion (Gerade), die jeden Wert zwischen -∞ und ∞ annehmen kann.
Wir wissen, dass für negative betragsmäßig große Werte im Exponent der 0 sehr schnell beliebig nahe kommt und für große positive Werte (sehr schnell) gegen ∞ strebt. Somit ist jeder Funktionswert im Bereich 0 < y < ∞ möglich.
Durch die
Umkehrfunktion
Wir schreiben einfach mal y für f(x) und lösen die Funktionsgleichung nach x auf:
| = | | | ||
| = | |ln(⋅) | ||
| = |
| = | | | ||
| = | |: | ||
| = |
Statt jedem x ein y zuzuordnen (x ↦ y), wird bei der Umkehrfunktion ja gerade andersrum dem y das x zugeordnet (y ↦ x).
Deswegen vertauschen wir nun x und y:
y =
und erhalten so die Umkehrfunktion (x) =
Halbwerts-/Verdoppl.-Zeit bestimmen
Beispiel:
Gegeben ist der Exponentialfunktion f mit mit unbekanntem Anfangswert c.
Bestimme die Verdopplungszeit.
Den Wachstumsfaktor a kann direkt aus dem Funktionterm ablesen: a=1.109.
Mit der Formel für die Verdopplungszeit gilt: TV = loga(2).
Also TV = log1.109() ≈ 6.7 (Zeiteinheiten)
a und ein Funktionswert gegeben
Beispiel:
Ein Staat verliert jedes Jahr 2,9% seiner Bevölkerung. Nach 4 Jahren hat der Staat noch 66,67 Millionen Einwohner. a) Wie viel Millionen Einwohner hat der Staat noch nach 7 Jahren? b) Wann hat das Land nur noch 55 Millionen Einwohner?
Da es sich hier um exponentielles Wachstum handelt, muss der Funktionsterm von der Form sein.
Die prozentuale Abnahme um 2.9% bedeutet ja, dass mit jedem Zeitschritt vom alten Bestand noch 2.9% weggehen,
also Bneu
= B - ⋅B = (1 - ) ⋅ B = 0,971 ⋅ B. Somit ist das a=0,971.
Somit wissen wir bereits, dass der Funktionsterm mit einem Anfangswert c sein muss.
Wir kennen zwar den Anfangswert f(0)=c nicht, wissen aber, dass nach 4 Jahre der Bestand 66.67 Millionen Einwohner ist, also f(4) = 66.67. Dies setzen wir in unsern bisherigen Funktionterm ein:
c ⋅ 0.9714 = 66.67
c ⋅ 0.88895 = 66.67 | : 0.88895
c = 75
Damit ergibt sich der Funktionsterm .
zu a)
Gesucht ist der Bestand zum Zeitpunkt t=7 Jahre, also f(7):
f(7) = ≈ 61,037.
zu b)
Hier wird gefragt, wann der Bestand = 55 Millionen Einwohner ist, also f(t) = 55:
| = | |: | ||
| = | |lg(⋅) | ||
| = | |||
| = | |: | ||
| = |
| = |
Nach ca. 10,539 Jahre ist also der Bestand = 55 Millionen Einwohner.
