Aufgabenbeispiele von Anwendungen
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Sinus und Thaleskreis (leicht)
Beispiel:
Das große Dreieck ist gleichschenklig.
Der blaue Halbkreis hat einen Durchmesser von u = 6.5 cm.
Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.5 cm.
Bestimme die fehlende Winkelweite α.
Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.
Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)=
Damit folgt sin(β)==0.846 und somit β=57.8°
Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 32.2°.
Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.
Mit α+32.2°=β=57.8° gilt nun: α = 25.6°
Sinus und Thaleskreis (schwer)
Beispiel:
Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.
Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.
Als Nebenwinkel von γ muss natürluch auch δ ein recher Winkel sein.
Aufgrund der Winkelsumme im zweiten Dreieck folgt δ + ε + 30° = 180°.
Daraus folgt ε = 180° - 90° - 30° = 60°.
Mit Hilfe der Gleichschenkligkeit des großen Dreiecks kann mann nun β bestimmen: Es gilt ε + 2⋅β = 180°. Daraus folgt β = = = 60°
Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:
Da g die Gegenkathete von β ist, gilt: sin(β)=sin(60°) =
Damit folgt g = sin(60°) ⋅ 6.5cm ≈ 5.6cm
Nun können wir im zweiten Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)=
Setzt man die bekannten Werte ein, so folgt sin(60°)=
Damit folgt: PQ = = 6.5cm
Winkel zw. Punkten im Koordinatensystem
Beispiel:
Berechne alle Längen und Winkel im Dreick ABC mit A(-2|-5), B(2|5) und C(-2|5).
Runde die Ergebnisse auf eine Nachkommastelle.
Wenn man die drei Punkte in ein Koordinatensystem einträgt, erkennt man sofort, dass (zwischen B und C) a = 4 und (zwischen A und C) b = 10 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:
Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.c2 = 42 + 102
c2 = 16 + 100
c2 = 116
c = ≈ 10.77
Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.
Den Winkel α können wir mit dem Tangens berechnen:
tan(α) = = = 0.4
Daraus folgt: α = arctan(0.4) ≈ 21.8°.
Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-21.8° = 68.2°
Trigonometrie Anwendungen
Beispiel:
Von einem Fenster in 8m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=40° gegenüber der Senkrechten. Wie breit ist der Kanal?
In beiden Dreiecken gilt für den Tangens: tan(α)=.
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=8 ⋅ tan(60°)
≈13.8564
Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=8 ⋅ tan(40°)
≈6.7128
Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=13.856 - 6.713 ≈ 7.144 m.