Aufgabenbeispiele von Bogenmaß

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = -450° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

-450° sind aber nur ein -450° 360° Kreis, also ist die gesuchte Bogenlänge x zu -450° auch nur -450° 360° ⋅ 2π = -450 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = -450° 180° ⋅π = - 15 6 ⋅π = - 5 2 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 3π im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

3π entspricht also dem Gradmaß 3⋅180° = 540°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 4.1 im Gradmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

4.1 = 4.1 π ⋅π entspricht also dem Gradmaß 4.1 π ⋅180° ≈ 234.9°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise sin( π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

π bedeutet 1 2 eines Kreises, also 1 2 von 360° = 180°.

Am Einheitskreis kann man den Wert für sin( π ) bzw. für sin(180°) ablesen:

sin( π ) bzw. sin(180°) ist der y-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der grünen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (orange) waagrechte Linie zur y-Aches verfolgt:

sin( π °) ≈ 0

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Sinuswert haben wie x = 41 12 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie 41 12 π. Dazu subtrahieren wir einfach 2π (= 24 12 π) vom gegebenen Winkel: 41 12 π - 24 12 π = 17 12 π.

Somit gilt x1 = 17 12 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Sinus-Werten symmetrisch bezüglich der y-Achse liegen, so dass man also x2 einfach als x2 = π - x1, also π - 17 12 π = - 5 12 π berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 5 12 π einfach - 5 12 π + 2 π = 19 12 π für x2.

Somit gilt: x1 = 17 12 π und x2 = 19 12 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel 41 12 π als 41 12 ⋅ 180° = 615° ins Gradmaß um und subtrahieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 255°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Sinuswert (grüner senkrechter Strich) symmetrisch zur y-Achse liegen.

Wenn wir jetzt den (braunen) Ausgangswinkel 255° als negativen Winkel 255° -360° = -105° sehen, (also im Uhrzeigersinn unten rum), dann sehen wir, dass sich der gespiegelte (pinke) Winkel - im Uhrzeigersinn unten rum - mit dem Ausgangswinkel zu 180° ergänzt. Wir können also hier einfach -180°- den gegebenen Winkel rechnen, um auf den Winkel mit dem gleichen Sinuswert zu kommen: hier also

β = -180° - (-105°) = -75°

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -75° + 360° = 285°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 17 12 π und x2 = 19 12 π