Aufgabenbeispiele von Bewegungsaufgaben

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


nach x Minuten

Beispiel:

Ein Flugzeug startet zum Zeitpunkt t=0 im Punkt A (-20|10|20) (alle Angaben in Meter). Nach 4s ist es im Punkt B (-180|170|100) angelangt. Wie hoch ist die Geschwindigkeit des Flugzeugs in km/h?
An welchem Ort befindet sich das Flugzeug nach 7s?
Wie weit ist das Flugzeug dann geflogen?
Berechne den Winkel mit dem das Flugzeug steigt?
Wann hat das Flugzeug die Höhe von 900m erreicht?

Lösung einblenden

Das Bewegungsobjekt legt in 4s den Vektor AB = ( -160 160 80 ) zurück.
In 1s legt es also den Vektor 1 4 ( -160 160 80 ) = ( -40 40 20 ) zurück. Dieser Vektor hat die Länge = (-40) 2 + 402 + 20 2 = 3600 = 60.
Die Geschwindigkeit ist also v=60 m s = 216 km h

Die Flugbahn/Bewegungsbahn kann als Gerade g mit g: x = ( -20 10 20 ) +t ( -40 40 20 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann. Nach 7 s befindet es sich also im Punkt mit dem Ortsvektor
OP = ( -20 10 20 ) +7 ( -40 40 20 ) = ( -300 290 160 ) , also im Punkt P(-300|290|160).

Das Bewegungsobjekt hat sich dann von A(-20|10|20) nach P(-300|290|160) bewegt, also um den Vektor AP = ( -280 280 140 ) . Dessen Länge ist (-280) 2 + 2802 + 140 2 = 176400 = 420 (in m).

Den Steigungswinkel kann man einfach als Schnittwinkel der Geraden mit der (horizontalen) x1-x2-Ebene berechnen. Die x1-x2-Ebene hat die Gleichung x3=0 und den Normalenvektor n = ( 0 0 1 ) .
Daraus ergibt sich für den Steigungswinkel α: sin(α)= | ( -40 40 20 ) ( 0 0 1 ) | | ( -40 40 20 ) | | ( 0 0 1 ) | = | (-40)0 + 400 + 201 | (-40) 2 + 402 + 20 2 0 2 + 02 + 1 2
= | 20 | 3600 1 0.3333 => α=19.5°

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 20m (Änderung in der x3-Koordinate). Um von 20 auf 900m (also 880m) zu steigen (bzw. fallen), muss es also 880 20 s = 44s lang steigen (bzw. sinken).

Bewegungsaufgabe mit geg. Geschwindigkeit

Beispiel:

Eine Leuchtrakete befindet sich zum Zeitpunkt t=0 im Punkt A (-100|-100|50) und fliegt mit einer konstanten Geschwindigkeit von 1080km/h in Richtung des Punktes B (-500|-500|250) (alle Koordinatenangaben in Meter).
Wann kommt sie im Punkt B an?
Wann hat die Rakete die (absolute) Höhe von 2650m erreicht? In welchem Punkt befindet es sich dann?

Lösung einblenden

Zuerst rechnen wir die Geschwindigkeit von km/h in m s um: v= 1080000 m 3600 s = 300 m s .
Die Länge des Vektors AB = ( -400 -400 200 ) ist (-400) 2 + (-400)2 + 200 2 = 360000 = 600 (in m).
Bei einer Geschwindigkeit von 300 m s . braucht er für diese Strecke 600 300 s = 2s.
Punkt B wird als nach 2s erreicht.

In einer s wird also der Vektor 1 2 ( -400 -400 200 ) = ( -200 -200 100 ) zurückgelegt.
Die Flugbahn/Bewegungsbahn kann so als Gerade g mit g: x = ( -100 -100 50 ) +t ( -200 -200 100 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

In 1s steigt (bzw. sinkt) das Bewegungsobjekt um 100m (Änderung in der x3-Koordinate). Um von 50 auf 2650m (also 2600m) zu steigen (bzw. fallen), muss es also 2600 100 s = 26s lang steigen (bzw. sinken) und ist dann im Punkt mit dem Ortsvektor OP = ( -100 -100 50 ) +26 ( -200 -200 100 ) = ( -5300 -5300 2650 )
Also im Punkt P(-5300|-5300|2650).

Höhe nach x Kilometern

Beispiel:

Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (-12|15|0) (alle Angaben in Meter). Nach 1min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B (0|27|-6) angelangt.
Wie tief ist das Uboot, wenn es 1,8 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)

Lösung einblenden

Das Bewegungsobjekt legt in 1 min den Vektor AB = ( 12 12 -6 ) zurück.
Die Geradengleichung x = ( -12 15 0 ) +t ( 12 12 -6 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge = 12 2 + 122 + (-6) 2 = 324 = 18.
Die Geschwindigkeit ist also v=18 m min
Für die Strecke von 1.8 km braucht es also 1800 18 min = 100min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( -12 15 0 ) +100 ( 12 12 -6 ) = ( 1188 1215 -600 ) , also im Punkt P(1188|1215|-600).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -600 (in m).

Zwei Objekte - gleiche Höhe

Beispiel:

Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (-17|-75|0) . Nach 5s ist sie im Punkt B (18|-30|2) angelangt. Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( -10 -9 0,8 ) +t ( 4 -3 0,3 ) . (alle Koordinaten in Meter; t in Sekunden seit Beobachtungsbeginn).
Wann sind die Drohne und die Seilbahngondel auf gleicher Höhe?
Wie weit ist Drohne von der Seilbahngondel entfernt, wenn sie genau senkrecht über der Seilbahn ist?
Berechne zu diesem Zeitpunkt, an dem die Drohne genau über der Seilbahn ist, den vertikalen Höhenunterschied zwischen Drohne und Seilbahn an dieser Stelle.

Lösung einblenden

Die Seilbahngondel F2 legt in 5s den Vektor AB = ( 35 45 2 ) zurück.
In 1s legt es also den Vektor 1 5 ( 35 45 2 ) = ( 7 9 0.4 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -17 -75 0 ) +t ( 7 9 0.4 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Um den Zeitpunkt zu finden, wann beide die gleiche Höhe haben, muss einfach ein t gefunden werden, bei dem die x3-Koordinate bei beiden Gleichungen gleich groß ist, also:

0,3t +0,8 = 0,4t +0
0,3t +0,8 = 0,4t | -0,8 -0,4t
-0,1t = -0,8 |:(-0,1 )
t = 8

nach 8 s sind also die Drohne F1 und die Seilbahngondel F2 auf gleicher Höhe: 0,38 +0,8 = 3.2 = 0,48 +0


Die Drohne F1 ist genau dann unter/über der Flugbahn von F2, wenn die x1- und x2-Koordinaten der beiden Geradengleichungen übereinstimmen. Da aber höchstwahrscheinlich die Seilbahngondel F2 zu einem anderen Zeitpunkt genau unter oder über der Flugbahn von F1 ist, müssen wir verschiedene Parameter in die beiden Geradengleichungen einsetzen.

( -10 -9 0.8 ) +s ( 4 -3 0.3 ) = ( -17 -75 0 ) +t ( 7 9 0.4 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-10+4s= -17+7t-9-3s= -75+9t

4s -7t = -7 (I) -3s -9t = -66 (II)
4s -7t = -7 (I) -3s -9t = -66 (II)

langsame Rechnung einblenden3·(I) + 4·(II)

4s -7t = -7 (I) ( 12 -12 )s +( -21 -36 )t = ( -21 -264 ) (II)
4s -7t = -7 (I) -57t = -285 (II)
Zeile (II): -57t = -285

t = 5

eingesetzt in Zeile (I):

4s -7·(5 ) = -7 | +35
4 s = 28 | : 4

s = 7

L={(7 |5 )}

Das heißt also, dass die Drohne F1 nach 7s und die Seilbahngondel F2 nach 5s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 7s bei ( -10 -9 0.8 ) +7 ( 4 -3 0.3 ) = ( 18 -30 2.9 ) , während die Seilbahngondel F2 nach 7s bei ( -17 -75 0 ) +7 ( 7 9 0.4 ) = ( 32 -12 2.8 ) ist.

Wir berechnen zuerst den Verbindungsvektor zwischen P1(18|-30|2.9) und P2(32|-12|2.8):
P1P2 = ( 32-18 -12-( - 30 ) 2.8-2.9 ) = ( 14 18 -0.1 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( 14 18 -0.1 ) | = 14 2 + 182 + (-0.1) 2 = 520.01 ≈ 22.803727765433

Der Abstand der beiden Objekte nach 7s ist also 519.84 m ≈ 22.8 m


Auch den scheinbaren Schnittpunkt, den der genau darunter stehende Beobachter sieht, berechnet man indem man die x1- und x2-Koordinaten der beiden Geradengleichungen gleichsetzt.

( -10 -9 0.8 ) +s ( 4 -3 0.3 ) = ( -17 -75 0 ) +t ( 7 9 0.4 ) da ja aber nur die x1- und x2-Koordinaten gleich sein müssen ergibt sich folgendes LGS:

-10+4s= -17+7t-9-3s= -75+9t

4s -7t = -7 (I) -3s -9t = -66 (II)
4s -7t = -7 (I) -3s -9t = -66 (II)

langsame Rechnung einblenden3·(I) + 4·(II)

4s -7t = -7 (I) ( 12 -12 )s +( -21 -36 )t = ( -21 -264 ) (II)
4s -7t = -7 (I) -57t = -285 (II)
Zeile (II): -57t = -285

t = 5

eingesetzt in Zeile (I):

4s -7·(5 ) = -7 | +35
4 s = 28 | : 4

s = 7

L={(7 |5 )}

Das heißt also, dass die Drohne F1 nach 7s und die Seilbahngondel F2 nach 5s an diesem 'x1-x2-Schnittpunkt' ist.

die Drohne F1 ist also nach 7s bei ( -10 -9 0.8 ) +7 ( 4 -3 0.3 ) = ( 18 -30 2.9 ) , während die Seilbahngondel F2 nach 5s bei ( -17 -75 0 ) +5 ( 7 9 0.4 ) = ( 18 -30 2 ) ist.

Sie haben dort also die selben x1- und x2-Koordinaten, in der Höhe (x3-Koordinate) haben sie jedoch einen Unterschied von

2.9 - 2 = 0.9 m

Zwei Objekte Aufgabe - Abstände

Beispiel:

Die Position einer Drohne zum Zeitpunkt t ist gegeben durch x = ( 3 -4 -1 ) +t ( 4 -3 -3 ) . (alle Koordinaten in m; t in Sekunden seit Beobachtungsbeginn).
Die Gondel einer Seilbahn startet zum Zeitpunkt t=0 im Punkt A (-3|8|16) . Nach 5s ist sie im Punkt B (17|-12|1) angelangt.
Wie weit sind die Drohne und die Seilbahngondel nach 4s von einander entfernt?
Berechne den kleinsten Abstand, den die Drohne von der Seilbahn haben kann.
Zu welchem Zeitpunkt kommen sich die Drohne und die Gondel der Seilbahn am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Die Seilbahngondel legt in 5s den Vektor AB = ( 20 -20 -15 ) zurück.
In 1s legt es also den Vektor 1 5 ( 20 -20 -15 ) = ( 4 -4 -3 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -3 8 16 ) +t ( 4 -4 -3 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

Die Drohne ist nach 4s an der Stelle P1 ( 3 -4 -1 ) +4 ( 4 -3 -3 ) = ( 19 -16 -13 ) und die Seilbahngondel an der Stelle P2 ( -3 8 16 ) +4 ( 4 -4 -3 ) = ( 13 -8 4 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(19|-16|-13) und P2(13|-8|4):
P1P2 = ( 13-19 -8-( - 16 ) 4-( - 13 ) ) = ( -6 8 17 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -6 8 17 ) | = (-6) 2 + 82 + 17 2 = 389 ≈ 19.723082923316

Der Abstand ist also ca. 19.72 m.


Um den kleinsten Abstand der beiden Bewegungsbahnen zu erhalten müssen wir die klassische Rechnung zur Bestimmung des Abstands zweier windschieder Geraden durchführen:

Zuerst bilden wir eine Ebene, welche die Gerade h: x = ( -3 8 16 ) +t ( 4 -4 -3 ) enthält und parallel zur Geraden g: x = ( 3 -4 -1 ) +t ( 4 -3 -3 ) ist, also x = ( -3 8 16 ) + r ( 4 -4 -3 ) + s ( 4 -3 -3 )
Der Normalenvektor dieser Ebene ist der Normalenvektor auf die beiden Richtungsvektoren der Geraden.

n = ( 4 -3 -3 ) × ( 4 -4 -3 ) = ( -3 · ( -3 ) - ( -3 ) · ( -4 ) -3 · 4 - 4 · ( -3 ) 4 · ( -4 ) - ( -3 ) · 4 ) = ( 9 -12 -12 +12 -16 +12 ) = ( -3 0 -4 )

Wenn wir den Aufpunkt von h Ah(-3|8|16) in die allgemeine Ebenengleichung 3 x 1 +4 x 3 = d einsetzen erhalten wir für diese Hilfsebene die Koordinatengleichung:

3 x 1 +4 x 3 = 55

Nun können wir den Abstand zwischen der Geraden g: x = ( 3 -4 -1 ) +t ( 4 -3 -3 ) und dieser (zu g parallelen) Ebene berechnen, indem wir aus der Geraden einen Punkt, am besten den Aufpunkt (3|-4|-1), nehmen und den Abstand zwischen diesem Punkt und der Ebene mit Hilfe der Hesse-Formel (Abstand Punkt-Ebene) berechnen. Dieser Abstand ist auch der Abstand der beiden windschiefen Geraden zueinander.

Wir berechnen den Abstand zwischen Punkt und Ebene mittels der Hesse'schen Normalenform.

d = | 3 3+0 ( - 4 )+4 ( - 1 )-55 | 3 2 + 0 2 + 4 2
= | -50 | 25 = 50 5 = 10

Alternativer (kürzerer) Lösungsweg mit Formel einblenden

Der Abstand der beiden Bewegungsbahnen beträgt somit 10 m


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( 3 +4 t | -4 -3 t | -1 -3 t ) und G2 t ( -3 +4 t | 8 -4 t | 16 -3 t ) minimal wird.

d(t)= | ( -3+4t 8-4t 16-3t ) - ( 3+4t -4-3t -1-3t ) | = | ( -6+0t 12-1t 17+0t ) | soll also minimal werden.

d(t)= ( 0 -6 ) 2 + ( -t +12 ) 2 + ( 0 +17 ) 2
= 36 + t 2 -24t +144 +289
= t 2 -24t +469

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 2x -24 +0

f''(t)= 2 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 12 als potentielle Extremstelle.

Wegen f''(t)= 2 +0+0 >0 ist also der Tiefpunkt bei t= 12 .

der minimale Abstand ist also d( 12 )= 12 2 -2412 +469 = 325 ≈ 18 (in m)

Höhe nach x Kilometern

Beispiel:

Ein Uboot startet zum Zeitpunkt t=0 im Punkt A (-12|12|0) (alle Angaben in Meter). Nach 1min geradliniger Fahrt mit konstanter Geschwindigkeit ist es im Punkt B (-39|30|-6) angelangt.
Wie tief ist das Uboot, wenn es 3,96 km zurückgelegt hat? (bitte als Höhe angeben, also mit negativem Vorzeichen)

Lösung einblenden

Das Bewegungsobjekt legt in 1 min den Vektor AB = ( -27 18 -6 ) zurück.
Die Geradengleichung x = ( -12 12 0 ) +t ( -27 18 -6 ) beschreibt also den Ortsvektor zu dem Punkt, an dem sich das Bewegungsobjekt nach t min befindet.
Dieser Richtungsvektor (der in 1 min zurückgelegt wird) hat die Länge = (-27) 2 + 182 + (-6) 2 = 1089 = 33.
Die Geschwindigkeit ist also v=33 m min
Für die Strecke von 3.96 km braucht es also 3960 33 min = 120min
Nach dieser Zeit befindet es sich dann im Punkt mit dem Ortsvektor
OP = ( -12 12 0 ) +120 ( -27 18 -6 ) = ( -3252 2172 -720 ) , also im Punkt P(-3252|2172|-720).

Die Höhe in diesem Punkt ist einfach die x3-Koordinate, also -720 (in m).

Zwei Objekte Aufgabe - Abstände (ohne windschief)

Beispiel:

Flugzeug Die Position eines Flugzeugs F1 zum Zeitpunkt t ist gegeben durch x = ( -9 -3 1 ) +t ( 15 -24 13 ) . (alle Koordinaten in km; t in Minuten seit Beobachtungsbeginn). Ein zweites Flugzeug F2 startet zum Zeitpunkt t=0 im Punkt A (-35|52|-17) . Nach 2min ist es im Punkt B (-3|4|7) angelangt.
Wie weit sind die beiden Flugzeuge nach 3min von einander entfernt?
Zu welchem Zeitpunkt kommen sich die beiden Flugzeuge am nächsten? Wie weit sind sie dann voneinander entfernt?

Lösung einblenden

Das Bewegungsobjekt legt in 2min den Vektor AB = ( 32 -48 24 ) zurück.
In 1min legt es also den Vektor 1 2 ( 32 -48 24 ) = ( 16 -24 12 ) zurück. Die Flugbahn/Bewegungsbahn kann als Gerade g2 mit g2: x = ( -35 52 -17 ) +t ( 16 -24 12 ) dargestellt werden, wobei der Parameter t dabei einfach als Zeit betrachtet werden kann.

F1 ist nach 3min an der Stelle P1 ( -9 -3 1 ) +3 ( 15 -24 13 ) = ( 36 -75 40 ) und F2 an der Stelle P2 ( -35 52 -17 ) +3 ( 16 -24 12 ) = ( 13 -20 19 ) .

Wir berechnen zuerst den Verbindungsvektor zwischen P1(36|-75|40) und P2(13|-20|19):
P1P2 = ( 13-36 -20-( - 75 ) 19-40 ) = ( -23 55 -21 )
Die Länge dieses Vektors ist dann der Abstand zwischen P1 und P2
d=| P1P2 | = | ( -23 55 -21 ) | = (-23) 2 + 552 + (-21) 2 = 3995 ≈ 63.206012372242

Der Abstand ist also ca. 63.21 km.


Um aber den geringsten Abstand der beiden Bewegungsobjekte zu berechnen, müssten wir den Abstand der beiden Positionen zu einer Zeit t bestimmen. Die aktuelle Position zum Zeitpunkt t lässt sich durch den allgemeinen Geradenpunkt darstellen.

Wir suchen also das t, so dass der Abstand zwischen G1 t ( -9 +15 t | -3 -24 t | 1 +13 t ) und G2 t ( -35 +16 t | 52 -24 t | -17 +12 t ) minimal wird.

d(t)= | ( -35+16t 52-24t -17+12t ) - ( -9+15t -3-24t 1+13t ) | = | ( -26+1t 55+0t -18-1t ) | soll also minimal werden.

d(t)= ( t -26 ) 2 + ( 0 +55 ) 2 + ( -t -18 ) 2
= t 2 -52t +676 +3025 + t 2 +36t +324
= 2 t 2 -16t +4025

da a < b a < b können wir auch das Minimum der quadratischen Funktion unter der Wurzel bestimmen, um die gesuchte Zeit t zu erhalten. Dazu leiten wir diese erst mal zwei mal ab:

f'(t)= 4x -16 +0

f''(t)= 4 +0+0

mit der notwendigen Bedingung f'(t)=0 erhält man t= 4 als potentielle Extremstelle.

Wegen f''(t)= 4 +0+0 >0 ist also der Tiefpunkt bei t= 4 .

der minimale Abstand ist also d( 4 )= 2 4 2 -164 +4025 = 3993 ≈ 63.2

Nicht lineare Bewegung

Beispiel:

Ein Fußballtorwart führt eine Abschlag auf einem Fußballplatz durch, der durch die x1x2-Ebene beschrieben wird. Die Bahn des Fußballs kann mithilfe der Punkte Xt( 16t -5 | 30t +3 | - t 2 +1,4t ) beschrieben werden; dabei ist t die seit dem Abschlag vergangene Zeit in Sekunden (Eine Längeneinheit im Koordinatensystem entspricht 1 m in der Realität). Auf dieser Bahn fliegt der Ball auf den Fußballplatz.
Berechne die Weite des Abschlags, also die Entfernung zwischen dem Punkt des Abstoßes und dem Punkt, bei dem der Ball das erste mal wieder auf dem Boden landet.

Lösung einblenden

Zuerst berechnen den t-Wert, an dem der Fußball auf die x1x2-Ebene trifft, also wenn x3= 0 ist:

- x 2 +1,4x = 0
x ( -x +1,4 ) = 0

Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.

1. Fall:

x1 = 0

2. Fall:

-x +1,4 = 0 | -1,4
-x = -1,4 |:(-1 )
x2 = 1,4

Das heißt also, dass der Fußball nach 1,4 s in der x1x2-Ebene angekommen ist. Wenn wir t = 1,4 in den Punkt Xt einsetzen, erhalten wir L( 161,4 -5 | 301,4 +3 | - 1,4 2 +1,41,4 ) = L(17.4|45|0) als den Landepunkt.

Da ja der Fußball im Punkt A(-5|3|0) losgeflogen ist, können wir die gesuchte Weite einfach als Länge des
Vektors AL = ( 17.4-( - 5 ) 45-3 0-0 ) = ( 22.4 42 0 ) berechnen:

d = 22.4 2 + 422 + 0 2 = 47,6