Aufgabenbeispiele von LGS
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme x so, dass (x|3) eine Lösung dieser Gleichung ist.
Man setzt einfach y = 3 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach x auflösen:
| = | |||
| = | | | ||
| = | |:() | ||
| = |
Die Lösung ist somit: (-7|3)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (5|6)
denn
1⋅
Eine weitere Lösung wäre aber auch: (3|5)
denn 1⋅
Oder : (7|7)
denn 1⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung gar kein x mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach y umstellen:
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Somit haben wir eine Lösung für x.
Für y haben wir die Lösung ja oben schon erhalten: y =
Die Lösung des LGS ist damit: (-6|6)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
y =
=
=
also
y = 1
Die Lösung des LGS ist damit: (4|1)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = -5
Die Lösung des LGS ist damit: (-2|-5)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = -5
Die Lösung des LGS ist damit: (2|-5)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = -4 und y = 1 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
-4x
-5x
Jetzt muss man einfach die Lösungen x = -4 und y = 1 einsetzen und ausrechnen:
-4x
-5x
So erhält mam als eine von unendlich vielen Lösungen:
-4x
-5x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 2
Die Lösung des LGS ist damit: (-6|2)
LGS Anwendungen
Beispiel:
In einem Raum brennen 8 LED-Leuchtmittel gleichen Typs und 6 baugleiche Halogenleuchten. Insgesamt verbrauchen alle Lichter in diesem Raum 130 Watt. In einem anderen Raum verbrauchen 3 LED-Leuchtmittel und 8 Halogenleuchten zusammen 135 Watt.Wie viel Watt verbraucht eine LED-Lampe, wie viel eine Halogenlampe?
Wir bezeichnen x als Stromverbrauch einer LED und y als Stromverbrauch einer Halogenlampe und
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 3 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 15
Die Lösung des LGS ist damit: (5|15)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
Stromverbrauch einer LED (x-Wert): 5
Stromverbrauch einer Halogenlampe (y-Wert): 15
quadr. Funktionterm bestimmen
Beispiel:
Die Punkte A(-1|-2) und B(-3|-10) liegen auf einer verschobenen Normalparabel.
Bestimme einen Funktionsterm dieser Parabel.
Wir setzen einfach bei beiden Punkten A und B jeweils den x- und den y-Wert in die allgemeine Funktionsgleichung y = x² + bx + c ein:
A(-1|-2): -2 =
B(-3|-10): -10 =
Damit erhalten wir ein LGS (lineares Gleichungssystem):
-2 = 1
-10 = 9
-3 = -1b +c
-19 = -3b +c
Wir vertauschen die linke mit der rechten Seite und lösen dann das LGS:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem c ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach c umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das c
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für b.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
c =
=
=
also
c = 5
Die Lösung des LGS ist damit: (8|5)
Jetzt können wir b=
Scheitel aus 2 Punkten bestimmen
Beispiel:
Die Punkte A(1|-5) und B(-1|3) liegen auf einer verschobenen Normalparabel.
Bestimme die Koordinaten des Scheitels dieser Parabel.
Um den Scheitel dieser Parabel bestimmen zu können, müssen wir zuerst den Funktionsterm dieser Parabel berechnen:
Wir setzen einfach bei beiden Punkten A und B jeweils den x- und den y-Wert in die allgemeine Funktionsgleichung y = x² + bx + c ein:
A(1|-5): -5 =
B(-1|3): 3 =
Damit erhalten wir ein LGS (lineares Gleichungssystem):
-5 = 1
3 = 1
-6 = 1b +c
2 = -1b +c
Wir vertauschen die linke mit der rechten Seite und lösen dann das LGS:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem c ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach c umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das c
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für b.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
c =
=
also
c = -2
Die Lösung des LGS ist damit: (-4|-2)
Jetzt können wir b=
Jetzt müssen wir noch den Scheitel dieser Parabel bestimmen:
1. Weg
Man erweitert die ersten beiden Summanden (
=
=
=
Jetzt kann man den Scheitel leicht ablesen: S(2|-6).
2. Weg
Wir betrachten nun nur
Von
|
|
= | ||
|
|
= |
Ein Produkt ist genau dann =0, wenn mindestens einer der beiden Faktoren =0 ist.
1. Fall:
| x1 | = |
2. Fall:
|
|
= | |
|
|
| x2 | = |
|
Aus Symmetriegründen muss der Scheitel genau in der Mitte zwischen den Nullstellen liegen, also S(2|y).
y =
also: S(2|-6).
