Aufgabenbeispiele von LGS
Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen
Wert zum Einsetzen finden
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme y so, dass (2|y) eine Lösung dieser Gleichung ist.
Man setzt einfach x = 2 in die Gleichung ein und erhält:
=
Jetzt kann man die Gleichung nach y auflösen:
| = | |||
| = | |||
| = | | | ||
| = | |:() | ||
| = |
Die Lösung ist somit: (2|2)
Wert zum Einsetzen finden (offen)
Beispiel:
Gegeben ist die Gleichung mit 2 Variablen: = .
Bestimme eine mögliche Lösung (x|y) dieser Gleichung ist.
Eine (der unendlich vielen) Lösungen wäre beispielsweise: (1|7)
denn
5⋅
Eine weitere Lösung wäre aber auch: (-2|2)
denn 5⋅
Oder : (4|12)
denn 5⋅
LGS (1 Var. schon aufgelöst)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung gar kein x mehr da ist.
Deswegen können wir diese Zeile sehr einfach nach y umstellen:
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das y
durch
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Für y haben wir die Lösung ja oben schon erhalten: y =
Die Lösung des LGS ist damit: (6|4)
LGS (1 Var. ohne Koeff.)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das x
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
x =
=
=
also
x = -3
Die Lösung des LGS ist damit: (-3|-2)
LGS (Standard)
Beispiel:
Löse das lineare Gleichungssystem:
Man erkennt, dass in der 1. Gleichung kein Koeffizient vor dem y ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach y umstellt:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|:( |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
also
y = 3
Die Lösung des LGS ist damit: (-4|3)
LGS (vorher umformen)
Beispiel:
Löse das lineare Gleichungssystem:
| | = | | (I) | ||
| | = | | (II) |
Zuerst formen wir die beiden Gleichungen so um, dass links nur noch die Variablen und rechts nur noch die Zahlenwerte stehen:
|
| = |
|
(I) | ||
|
| = |
|
(II) |
|
| = |
|
| +
| (I) | |
|
| = |
|
|
| (II) |
Man erkennt, dass in der 2. Gleichung kein Koeffizient vor dem x ist.
Deswegen ist es am einfachsten, wenn man diese Zeile nach x umstellt:
|
|
= |
|
|
|
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 2. Zeile können wir nun in der 1. Zeile das x
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für y.
Diese setzen wir nun in die bereits umgestellte 2. Zeile ein:
x =
=
=
also
x = 6
Die Lösung des LGS ist damit: (6|3)
LGS zu Lösungen finden
Beispiel:
Finde ein lineares Gleichungssystem, bei dem x = 5 und y = -3 Lösungen sind.
Dabei darf keiner der Koeffizienten =0 sein.
Eigentlich kann man die Koeffizienten vor x und y frei wählen, z.B.:
-2x
-4x
Jetzt muss man einfach die Lösungen x = 5 und y = -3 einsetzen und ausrechnen:
-2x
-4x
So erhält mam als eine von unendlich vielen Lösungen:
-2x
-4x
LGS Lösungsvielfalt erkennen
Beispiel:
Bestimme die Lösungsmenge:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 2 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 4
Die Lösung des LGS ist damit: (1|4)
LGS Anwendungen
Beispiel:
In einem Raum brennen 7 LED-Leuchtmittel gleichen Typs und 8 baugleiche Halogenleuchten. Insgesamt verbrauchen alle Lichter in diesem Raum 242 Watt. In einem anderen Raum verbrauchen 7 LED-Leuchtmittel und 6 Halogenleuchten zusammen 192 Watt.Wie viel Watt verbraucht eine LED-Lampe, wie viel eine Halogenlampe?
Wir bezeichnen x als Stromverbrauch einer LED und y als Stromverbrauch einer Halogenlampe und
Aus den Sätzen der Aufgabenstellung ergibt sich somit folgendes lineare Gleichungssystem:
Wir stellen die 1. Gleichung nach y um:
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Als neues LGS erhält man so:
Wegen der 1. Zeile können wir nun in der 2. Zeile das y
durch (
|
|
= |
|
|
|
|
= |
|
|
|
|
= |
|
|⋅ 4 |
|
|
= |
|
|
|
|
= |
|
|
|
|
|
= |
|
|: |
|
|
= |
|
Somit haben wir eine Lösung für x.
Diese setzen wir nun in die bereits umgestellte 1. Zeile ein:
y =
=
=
also
y = 25
Die Lösung des LGS ist damit: (6|25)
Bezogen auf die Anwendungsaufgabe ergibt sich nun als Lösung:
Stromverbrauch einer LED (x-Wert): 6
Stromverbrauch einer Halogenlampe (y-Wert): 25
