nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Zufallsgröße (ohne Wahrscheinlichkeit)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz zwischen der größeren Augenzahl und der kleineren (oder gleich großen) Augenzahl der beiden Würfe. Gib alle Werte an, die die Zufallsgröße X annehmen kann.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz der beiden Würfe' sind folgende Werte möglich:

Zufallsgröße X0134
zugehörige
Ereignisse
1 - 1
4 - 4
5 - 5
4 - 5
5 - 4
1 - 4
4 - 1
1 - 5
5 - 1

Zufallsgröße WS-Verteilung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(
Ein Würfel mit nebenstehendem Netz wird 2 mal geworfen. Die Zufallsgröße X beschreibt die Differenz: Augenzahl beim ersten Wurf - Augenzahl beim zweiten Wurf (es sind also auch negative Werte für diese Differenz möglich). Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Differenz Würfel1 - Würfel2' sind folgende Werte möglich:

Zufallsgröße XX = -4X = -3X = -1X = 0X = 1X = 3X = 4
zugehörige
Ergebnisse
2 - 63 - 62 - 32 - 2
3 - 3
6 - 6
3 - 26 - 36 - 2
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = -4X = -3X = -1X = 0X = 1X = 3X = 4
zugehörige
Wahrscheinlichkeit P(X)
1 2 1 3 1 6 1 3 1 2 1 6 1 2 1 2
+ 1 6 1 6
+ 1 3 1 3
1 6 1 2 1 3 1 6 1 3 1 2
  = 1 6 1 18 1 12 1 4 + 1 36 + 1 9 1 12 1 18 1 6



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X-4-3-10134
P(X=k) 1 6 1 18 1 12 7 18 1 12 1 18 1 6

Zufallsgr. WS-Vert. (auch ohne zur.)

Beispiel:

In einem Kartenstapel sind nur noch vier Karten mit dem Wert 2, vier Karten mit dem Wert 7 und vier 8er.Es werden zwei Karten ohne Zurücklegen gezogen. Die Zufallsgröße X beschreibt die Summe der Werte der beiden gezogenen Karten. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.

Lösung einblenden

Für die Zufallsgröße X: 'Summe der beiden Karten' sind folgende Werte möglich:

Zufallsgröße XX = 4X = 9X = 10X = 14X = 15X = 16
zugehörige
Ergebnisse
2 - 22 - 7
7 - 2
2 - 8
8 - 2
7 - 77 - 8
8 - 7
8 - 8
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(


Jetzt müssen die Wahrscheinlichkeiten der einzelnen Ereignisse erst mal (mit Hilfe eines Baums) berechnet werden.


Und somit können wir dann auch die Wahrscheinlichkeiten für die einzelnen Werte der Zufallsgröße berechnen.

Zufallsgröße XX = 4X = 9X = 10X = 14X = 15X = 16
zugehörige
Wahrscheinlichkeit P(X)
1 3 3 11 1 3 4 11
+ 1 3 4 11
1 3 4 11
+ 1 3 4 11
1 3 3 11 1 3 4 11
+ 1 3 4 11
1 3 3 11
  = 1 11 4 33 + 4 33 4 33 + 4 33 1 11 4 33 + 4 33 1 11



Hiermit ergibt sich die gesuchte Wahrscheinlichkeitsverteilung für die Zufallsgröße X:

Zufallsgröße X4910141516
P(X=k) 1 11 8 33 8 33 1 11 8 33 1 11

Zufallsgr. WS-Vert. (ziehen bis erstmals ...)

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 2 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird.Die Zufallsgröße X beschreibt dabei die Anzahl der nach diesem Verfahren einsammelten Hausaufgaben. Stelle eine Wahrscheinlichkeitsverteilung für die Zufallsgröße X auf.
(Denk daran, die Brüche vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Da ja nur 2 Hausaufgaben vom Typ 'Jungs' vorhanden sind, muss spätestens im 3-ten Versuch (wenn dann alle Hausaufgaben vom Typ 'Jungs' bereits gezogen und damit weg sind) eine Hausaufgabe vom Typ 'Mädchen' gezogen werden.

Das heißt die Zufallsgröße X kann nur Werte zwischen 1 und 3 annehmen.

Aus dem reduzierten Baumdiagramm rechts kann man nun die Wahrscheinlichkeitsverteilung der Zufallsgröße X übernehmen:

Zufallsgröße X123
P(X=k) 15 17 15 136 1 136

Zufallsgröße rückwärts

Beispiel:

In einer Urne sind 20 Kugeln, die mit verschiedenen Zahlen beschriftet sind. Dabei gibt es nur die Zahlen 2, 4 und 8 als Beschriftung. Es werden zwei Kugeln mit Zurücklegen gezogen. Die Zufallsgröße X beschreibt das Produkt der Zahlen der beiden gezogenen Kugeln. Bei der Wahrscheinlichkeitsverteilung von X sind nur der erste und der letzte Wert bekannt (siehe Tabelle). Wie viele Kugeln mit den oben genannten Zahlen als Beschriftung müssen jeweils in der Urne sein?

Zufallsgröße X48163264
P(X=k) 1 25 ??? 9 100

Lösung einblenden

Für X=4 gibt es nur das Ereignis: '2'-'2', also dass zwei mal hintereinander '2' kommt.

Wenn p1 die Wahrscheinlichkeit von '2' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '2' kommt, gelten: P(X=4) = p1 ⋅ p1 (siehe Baumdiagramm).

Aus der Tabelle können wir aber P(X=4) = 1 25 heraus lesen, also muss gelten:

p1 ⋅ p1 = (p1)2 = 1 25 und somit p1 = 1 5 .

Ebenso gibt es für X=64 nur das Ereignis: '8'-'8', also dass zwei mal hintereinander '8' kommt.

Wenn p3 die Wahrscheinlichkeit von '8' ist, dann muss also für die Wahrscheinlichkeit, dass zwei mal hintereinander '8' kommt, gelten: P(X=64) = p3 ⋅ p3 (siehe Baumdiagramm).

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Aus der Tabelle können wir aber P(X=64) = 9 100 heraus lesen, also muss gelten:

p3 ⋅ p3 = (p3)2 = 9 100 und somit p3 = 3 10 .

Da es aber nur drei Optionen gibt, muss p1 + p2 + p3 = 1 gelten, also

p2 = 1 - p1 - p3 = 1 - 1 5 - 3 10 = 10 10 - 2 10 - 3 10 = 5 10 = 1 2

Um nun noch die jeweilige Anzahl der Kugeln mit gleicher Zahl zu ermittlen, müssen wir einfach die Wahrscheinlichkeit mit 20 multiplizieren, weil ja für die Wahrscheinlichkeit für eine der n Kugeln mit einer bestimmten Zahl gilt: p = n 20

Somit erhalten wir:

n2 = 1 5 ⋅ 20 = 4

n4 = 1 2 ⋅ 20 = 10

n8 = 3 10 ⋅ 20 = 6

Erwartungswerte

Beispiel:

Bei einer Tombola steht auf jedem zehnten Los 100 Punkte, auf jedem fünften Los 15 Punkte, auf jedem vierten Los 12 Punkte und auf allen anderen 1 Punkt. Wie viele Punkte bringt ein Los durchschnttlich ein?

Lösung einblenden

Die Zufallsgröße X beschreibt die Anzahl der Punkte auf einem Los.

Erwartungswert der Zufallsgröße X

Ereignis 100 15 12 1
Zufallsgröße xi 100 15 12 1
P(X=xi) 1 10 1 5 1 4 9 20
xi ⋅ P(X=xi) 10 3 3 9 20

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 100⋅ 1 10 + 15⋅ 1 5 + 12⋅ 1 4 + 1⋅ 9 20

= 10+ 3+ 3+ 9 20
= 329 20

16.45

Faires Spiel - fehlende Auszahlung best.

Beispiel:

Ein Spieler darf aus einer Urne mit 6 blauen, 10 roten, 4 grünen und 4 weißen Kugeln eine Kugel ziehen. Erwischt er eine blaue, so erhält er 16€. Bei rot erhält er 12€ und bei grün erhält er 30€. Welchen Betrag muss er bei weiß erhalten damit das Spiel fair ist, wenn der Einsatz 20€ beträgt ?

Lösung einblenden

Die Zufallsgröße X beschreibt die Auszahlung.

Die Zufallsgröße Y beschreibt den Gewinn, also Auszahlung - Einsatz.

Erwartungswerte der Zufallsgrößen X und Y

Ereignis blau rot grün weiß
Zufallsgröße xi 16 12 30 x
Zufallsgröße yi (Gewinn) -4 -8 10 x-20
P(X=xi) 6 24 10 24 4 24 4 24
xi ⋅ P(X=xi) 4 5 5 4 24 ⋅ x
yi ⋅ P(Y=yi) -1 - 10 3 5 3 4 24 ⋅(x-20)

Um den gesuchten Auszahlungsbetrag zu berrechnen hat man zwei Möglichkeiten:

Entweder stellt man eine Gleichung auf, so dass der Erwartungswert des Auszahlungsbetrags gleich des Einsatzes ist ...

E(X) = 20

6 24 · 16 + 10 24 · 12 + 4 24 · 30 + 4 24 x = 20

4 +5 +5 + 4 24 x = 20

4 +5 +5 + 1 6 x = 20
1 6 x +14 = 20 |⋅ 6
6( 1 6 x +14 ) = 120
x +84 = 120 | -84
x = 36

... oder man stellt eine Gleichung auf, so dass der Erwartungswert des Gewinns gleich null ist:

E(Y) = 0

6 24 · ( -4 ) + 10 24 · ( -8 ) + 4 24 · 10 + 4 24 ( x -20 ) = 0

-1 - 10 3 + 5 3 + 1 6 · x + 1 6 · ( -20 ) = 0

-1 - 10 3 + 5 3 + 1 6 x - 10 3 = 0
1 6 x -6 = 0 |⋅ 6
6( 1 6 x -6 ) = 0
x -36 = 0 | +36
x = 36

In beiden Fällen ist also der gesuchte Betrag: 36

Erwartungswert ganz offen

Beispiel:

Eine Klasse möchte beim Schulfest ein Glücksrad mit Spielgeld anbieten. Dabei soll das Glücksrad in Sektoren aufgeteilt werden, in denen der Auszahlungsbetrag (z.B. 3€) drin steht. Nach langer Diskussion einigt man sich auf folgende Punkte:

  • Das Spiel mit dem Glücksrad muss fair sein
  • Der Einsatz soll 10€ betragen
  • Der minimale Auszahlungsbetrag soll 8€ sein
  • Der maximale Auszahlungsbetrag soll soll 20€ sein
  • Es sollen genau 4 Sektoren mit verschiedenen Auszahlungsbeträgen auf dem Glücksrad sein
Finde eine Möglichkeit für solch ein Glücksrad und trage diese in die Tabelle ein.

Lösung einblenden

Eine (von vielen möglichen) Lösungen:

Als erstes schreiben wir mal die Vorgaben in die Tabelle rein.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 8 20
Y Gewinn (Ausz. - Einsatz) -2 10
P(X) = P(Y)
Y ⋅ P(Y)

Jetzt setzen wir die Wahrscheinlichkeiten so, dass der negative Beitrag vom minimalen Betrag zum Erwartungswert den gleichen Betrag hat wie der positve vom maximalen Betrag.(dazu einfach jeweils den Gewinn in den Nenner der Wahrscheinlichkeit)

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 8 20
Y Gewinn (Ausz. - Einsatz) -2 10
P(X) = P(Y) 1 2 1 10
Y ⋅ P(Y) -1 1

Die bisherigen Optionen vereinen eine Wahrscheinlichkeit von 1 2 + 1 10 = 3 5
Als Restwahrscheinlichkeit für die verbleibenden Beträge bleibt nun also 1- 3 5 = 2 5 .
Diese wird auf die beiden verbleibenden Optionen verteilt:

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 8 20
Y Gewinn (Ausz. - Einsatz) -2 10
P(X) = P(Y) 1 2 1 5 1 5 1 10
Y ⋅ P(Y) -1 1

Damit nun der Erwartungswert =0 wird, müssen sich die beiden noch verbleibenden Anteile daran gegenseitig aufheben. Dies erreicht man, in dem man den Gewinn jeweils gleich 'weit vom Einsatz weg' (nämlich 1) setzt.

  Feld1 Feld2 Feld3 Feld4
X (z.B. Auszahlung) 8 9 11 20
Y Gewinn (Ausz. - Einsatz) -2 -1 1 10
P(X) = P(Y) 1 2 1 5 1 5 1 10
Winkel 180° 72° 72° 36°
Y ⋅ P(Y) -1 - 1 5 1 5 1

Wenn man nun den Erwartungswert berechnet, kommt der gesuchte heraus:

E(Y)= -2⋅ 1 2 + -1⋅ 1 5 + 1⋅ 1 5 + 10⋅ 1 10

= -1 - 1 5 + 1 5 + 1
= - 5 5 - 1 5 + 1 5 + 5 5
= 0 5
= 0

Erwartungswerte bei 'Ziehen bis erstmals ...'

Beispiel:

Eine Lehrerin sammelt die Hausaufgaben von einigen Schülern ein, um zu kontrollieren, ob diese auch ordentlich gemacht wurden. Aus Zeitgründen möchte sie aber nicht alle, sondern nur ein paar wenige einsammeln, welche durch ein Losverfahren ausgewählt werden. Aus (der unbegründeten) Angst ungerecht behandelt zu werden, bestehen die 3 Jungs darauf, dass unbedingt immer eine Hausaufgabe eines der 15 Mädchen der Klasse eingesammelt wird. Deswegen wird solange gelost, bis das erste Mädchen gezogen wird. Mit wie vielen Hausaufgabenüberprüfungen muss die Lehrerin im Durchschnitt rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

Die Wahrscheinlichkeit für ein 'Mädchen' im 1-ten Versuch st: 5 6

Die Wahrscheinlichkeit für ein 'Mädchen' im 2-ten Versuch st: 5 34

Die Wahrscheinlichkeit für ein 'Mädchen' im 3-ten Versuch st: 5 272

Die Wahrscheinlichkeit für ein 'Mädchen' im 4-ten Versuch st: 1 816

Die Zufallsgröße X beschreibt Anzahl der eingesammelten Hausaufgaben bis das erste Mädchen gezogen wird.

Erwartungswert der Zufallsgröße X

Ereignis 1 2 3 4
Zufallsgröße xi 1 2 3 4
P(X=xi) 5 6 5 34 5 272 1 816
xi ⋅ P(X=xi) 5 6 5 17 15 272 1 204

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1⋅ 5 6 + 2⋅ 5 34 + 3⋅ 5 272 + 4⋅ 1 816

= 5 6 + 5 17 + 15 272 + 1 204
= 680 816 + 240 816 + 45 816 + 4 816
= 969 816
= 19 16

1.19

Erwartungswerte mit gesuchten Anzahlen im WS-Baum

Beispiel:

In einem Kartenstapel befinden sich 4 Asse und 12 weitere Karten. Nachdem diese gut gemischt wurden, darf ein Spieler 3 Karten ziehen. Für jedes As, das unter den drei Karten ist, erhält er dabei 10€. Mit welchem Gewinn kann er rechnen?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As -> As 1 140
As -> As -> andereKarte 3 70
As -> andereKarte -> As 3 70
As -> andereKarte -> andereKarte 11 70
andereKarte -> As -> As 3 70
andereKarte -> As -> andereKarte 11 70
andereKarte -> andereKarte -> As 11 70
andereKarte -> andereKarte -> andereKarte 11 28

Die Wahrscheinlichkeit für 0 mal 'As' ist: 11 28

Die Wahrscheinlichkeit für 1 mal 'As' ist: 11 70 + 11 70 + 11 70 = 33 70

Die Wahrscheinlichkeit für 2 mal 'As' ist: 3 70 + 3 70 + 3 70 = 9 70

Die Wahrscheinlichkeit für 3 mal 'As' ist: 1 140

Die Zufallsgröße X beschreibt den Gewinn für die 3 gezogenen Karten.

Erwartungswert der Zufallsgröße X

Ereignis 0 1 2 3
Zufallsgröße xi 0 10 20 30
P(X=xi) 11 28 33 70 9 70 1 140
xi ⋅ P(X=xi) 0 33 7 18 7 3 14

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 0⋅ 11 28 + 10⋅ 33 70 + 20⋅ 9 70 + 30⋅ 1 140

= 0+ 33 7 + 18 7 + 3 14
= 0 14 + 66 14 + 36 14 + 3 14
= 105 14
= 15 2

7.5

Erwartungswerte mit best. Optionen im WS-Baum

Beispiel:

In einem Stapel Karten mit 9 Asse, 8 Könige, 6 Damen und 7 Buben werden 2 Karten gezogen. Dabei zählen 2 Asse 1000, 2 Könige 350, 2 Damen 240 und 2 Buben 50 Punkte. Außerdem gibt es für ein Paar aus Dame und König 15 Punkte. Wie viele Punkte kann man bei diesem Spiel erwarten?
(Denk daran, den Bruch vollständig zu kürzen!)

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :(

Wahrscheinlichkeiten für die verschiedenen Ausgänge

EreignisP
As -> As 12 145
As -> König 12 145
As -> Dame 9 145
As -> Bube 21 290
König -> As 12 145
König -> König 28 435
König -> Dame 8 145
König -> Bube 28 435
Dame -> As 9 145
Dame -> König 8 145
Dame -> Dame 1 29
Dame -> Bube 7 145
Bube -> As 21 290
Bube -> König 28 435
Bube -> Dame 7 145
Bube -> Bube 7 145

Die Wahrscheinlichkeit für '2 Asse' ist:

P('As'-'As')
= 12 145

Die Wahrscheinlichkeit für '2 Könige' ist:

P('König'-'König')
= 28 435

Die Wahrscheinlichkeit für '2 Damen' ist:

P('Dame'-'Dame')
= 1 29

Die Wahrscheinlichkeit für '2 Buben' ist:

P('Bube'-'Bube')
= 7 145

Die Wahrscheinlichkeit für 'Paar (D&K)' ist:

P('König'-'Dame') + P('Dame'-'König')
= 8 145 + 8 145 = 16 145

Die Zufallsgröße X beschreibt die gewonnenen Punkte.

Erwartungswert der Zufallsgröße X

Ereignis 2 Asse 2 Könige 2 Damen 2 Buben Paar (D&K)
Zufallsgröße xi 1000 350 240 50 15
P(X=xi) 12 145 28 435 1 29 7 145 16 145
xi ⋅ P(X=xi) 2400 29 1960 87 240 29 70 29 48 29

Der Erwartungswert verechnet sich aus der Summe der einzelnen Produkte:

E(X)= 1000⋅ 12 145 + 350⋅ 28 435 + 240⋅ 1 29 + 50⋅ 7 145 + 15⋅ 16 145

= 2400 29 + 1960 87 + 240 29 + 70 29 + 48 29
= 7200 87 + 1960 87 + 720 87 + 210 87 + 144 87
= 10234 87

117.63