nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Kettenregel ohne e-Fktn (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 2 ( -x -4 ) 4 und vereinfache:

Lösung einblenden

f(x)= - 1 2 ( -x -4 ) 4

f'(x)= -2 ( -x -4 ) 3 · ( -1 +0 )

= -2 ( -x -4 ) 3 · ( -1 )

= 2 ( -x -4 ) 3

Kettenregel ohne e-Fktn 2 (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - 1 ( -3x +2 ) 3 und vereinfache:

Lösung einblenden

f(x)= - 1 ( -3x +2 ) 3

= - ( -3x +2 ) -3

=> f'(x) = 3 ( -3x +2 ) -4 · ( -3 +0 )

f'(x)= 3 ( -3x +2 ) 4 · ( -3 +0 )

= 3 ( -3x +2 ) 4 · ( -3 )

= - 9 ( -3x +2 ) 4

Kettenregel ohne e-Fktn (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= - -x +2 und vereinfache:

Lösung einblenden

f(x)= - -x +2

= - ( -x +2 ) 1 2

=> f'(x) = - 1 2 ( -x +2 ) - 1 2 · ( -1 +0 )

f'(x)= - 1 2 -x +2 · ( -1 +0 )

= - 1 2 -x +2 · ( -1 )

= 1 2 -x +2

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(1).

Lösung einblenden

Wir können der Zeichnung rechts f(1) = 1 entnehmen.

Also gilt h(1) = g(f(1)) = g(1)

g(1) können wir auch wieder am (blauen) Graph ablesen:
h(1) = g(f(1)) = g(1) = 1.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(3|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(3)
Wegen -1 = h(x)= g(f(x))= g(3) gilt also f(x) = 3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =3 sind.

Diese erkennen wir bei Q1(-2|3) und Q2(2|3), also bei
x1 = -2 und x2 = 2

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(2)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(2) = 2 entnehmen.

Wir suchen also f(f '(2)) = f(2).

f(2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(2)) = f(2) = -1 .

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -2 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -2 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-2|-2), der auf dem Graph von g liegt, also gilt:
-2 = g(-2)
Wegen -2 = h(x)= g(f(x))= g(-2) gilt also f(x) = -2.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-2 sind.

Diese erkennen wir bei Q1(-2|-2) und Q2(0|-2), also bei
x1 = -2 und x2 = 0

nur Produktregel ohne e-Fktn

Beispiel:

Berechne die Ableitung von f mit f(x)= cos( x ) · sin( x ) und vereinfache:

Lösung einblenden

f(x)= cos( x ) · sin( x )

f'(x)= - sin( x ) · sin( x ) + cos( x ) · cos( x )

= - sin( x ) · sin( x ) + ( cos( x ) ) 2

= - ( sin( x ) ) 2 + ( cos( x ) ) 2

Ketten- und Produktregel (BF)

Beispiel:

Berechne die Ableitung von f mit f(x)= x 5 · 2x +5 und vereinfache:

Lösung einblenden

f(x)= x 5 · 2x +5

= x 5 · ( 2x +5 ) 1 2

=> f'(x) = 5 x 4 · ( 2x +5 ) 1 2 + x 5 · 1 2 ( 2x +5 ) - 1 2 · ( 2 +0 )

f'(x)= 5 x 4 · 2x +5 + x 5 · 1 2 2x +5 · ( 2 +0 )

= 5 x 4 2x +5 + x 5 · 1 2 2x +5 · ( 2 )

= 5 x 4 2x +5 + x 5 · 1 2x +5

= 5 x 4 2x +5 + x 5 2x +5

Ketten- und Produktregel (LF)

Beispiel:

Berechne die Ableitung von f mit f(x)= ( x 2 -6 ) · sin( 2x ) und vereinfache:

Lösung einblenden

f(x)= ( x 2 -6 ) · sin( 2x )

f'(x)= ( 2x +0 ) · sin( 2x ) + ( x 2 -6 ) · cos( 2x ) · 2

= 2x · sin( 2x ) + ( x 2 -6 ) · 2 cos( 2x )

= 2 x · sin( 2x ) +2 ( x 2 -6 ) · cos( 2x )

Anzahl Nullstellen bei Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= 2( x -1 ) und der Graph einer Funktion g (in der Abblidung rechts). Die Funktion h ist eine Verkettung von f und g mit h = f ∘ g.

Wie viele verschiedene Nullstellen hat die Funktion h im abgebildeten Bereich?

Lösung einblenden

Zuerst bestimmen wir die Nullstellen der Funktion f:

2( x -1 ) = 0
2x -2 = 0 | +2
2x = 2 |:2
x = 1
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das bedeutet, dass f(1)=0 gilt - und es kein weiteres x gibt mit f(x)=0.
Wir suchen ja aber die x, für die h(x)=f(g(x))= 0 ist.
Also müssen dies doch gerade die x-Werte sein, für die g(x) = 1 gilt, denn dann gilt ja f(g(x)) = f( 1) = 0.

Wir schauen also am abgebildeten Graph, wie viele Lösungen die Gleichung g(x) = 1 besitzt.

Man erkennt - notfalls durch Einzeichnen einer Geraden y = 1, dass dies gerade 1 Schnittpunkts sind.

Das heißt, dass dieser 1 x-Wert dieses Schnittpunkts alle Lösungen von f(g(x)) = f( 1) = 0 und somit alle Nullstellen der verketteten Funktion h = f ∘ g sind.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 -2x -8
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x -2 )⋅g(x) + ( x 2 -2x -8 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -1 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 1, (also gilt g '(1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 -2x -8 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +2 ± ( -2 ) 2 -4 · 1 · ( -8 ) 21

x1,2 = +2 ± 4 +32 2

x1,2 = +2 ± 36 2

x1 = 2 + 36 2 = 2 +6 2 = 8 2 = 4

x2 = 2 - 36 2 = 2 -6 2 = -4 2 = -2

Für die Ableitung von f mit f(x)= x 2 -2x -8 gilt: f'(x)= 2x -2 . Diese setzen wir = 0:

2x -2 = 0 | +2
2x = 2 |:2
x = 1

Wir haben also sowohl bei f als auch bei g eine eine Extremstelle bei x = 1, wodurch mit f'(1)=0 und g'(1)=0 in beiden Summanden der Produktregel eine Null als Faktor vorhanden ist.
es gilt also h'(1) = f'(1)⋅g(1) + f(1)⋅g'(1) = 0⋅g(1) + f(1)⋅0 = 0.

Damit hat h an der Stelle x = 1 eine waagrechte Tangente.

waagr. Tang. bei Produkt/Verkettung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f mit f(x)= x 2 +6x +9
und der Graph einer Funktion g (in der Abblidung rechts).

Die Funktion h ist ein Produkt von f und g, also h(x) = f(x)⋅g(x).

Man kann ohne Kenntnis der Funktionsterms von g eine Stelle finden, an der der Graph der Funktion h eine waagrechte Tangent besitzt. Gib diese an.

Lösung einblenden

Wenn h(x) eine waagrechte Tangente haben soll, muss an dieser Stelle h'(x)=0 gelten. Wegen der Produktregel wissen wir, dass

h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x) = ( 2x +6 )⋅g(x) + ( x 2 +6x +9 )⋅g'(x)

gilt.

Die wahrscheinlich einfachste Möglichkeit, dass dieser Term den Wert 0 hat, ist, wenn eben beide Summanden = 0 sind.

Wegen des Satzes vom Nullprodukt, betrachten wir nun alle Nullstellen der 4 Einzelterme:

Am Graph von g erkennen wir schnell, dass die die Nullstellen von g bei x = -1 und bei x = 3 sind.
Der Extrempunkt des Graphs liegt bei x = 1, (also gilt g '(1) = 0).

Wenn wir nun noch die Null- und Extremstellen von f berechnen, finden wir vielleicht eine Stelle bei der beide Summanden der Produktregel =0 sind:

x 2 +6x +9 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = -6 ± 6 2 -4 · 1 · 9 21

x1,2 = -6 ± 36 -36 2

x1,2 = -6 ± 0 2

Da die Wurzel Null ist, gibt es nur eine Lösung:

x = -6 2 = -3

Theoretisch erkennen wir schon hier, dass an dieser doppelten Nullstelle auch ein Extrempunkt vorliegen muss, wir rechnen aber trotzdem noch mal nach:

Für die Ableitung von f mit f(x)= x 2 +6x +9 gilt: f'(x)= 2x +6 . Diese setzen wir = 0:

2x +6 = 0 | -6
2x = -6 |:2
x = -3

Es gilt also f(-3) = f'(-3) = 0, somit gilt h'(-3) = f'(-3)⋅g(-3) + f(-3)⋅g'(-3) = 0⋅g(-3) + 0⋅g'(-3) = 0.

Somit hat h an der Stelle x =-3 eine waagrechte Tangente.