nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Ableiten (ganzrational)

Beispiel:

Berechne die Ableitung von f mit f(x)= 4 x 5 -2 x 2 und vereinfache:

Lösung einblenden

f(x)= 4 x 5 -2 x 2

f'(x)= 20 x 4 -4x

Ableiten an einem Punkt

Beispiel:

Berechne die Ableitung von f mit f(x)= - x 3 und gib die Steigung von f an der Stelle x=0 an:

Lösung einblenden

f(x)= - x 3

=>f'(x)= -3 x 2

f'(0) = -3 0 2 = -30 = 0

Ableiten mit x im Nenner

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 x 3 und vereinfache:

Lösung einblenden

f(x)= 3 x 3

= 3 x -3

=> f'(x) = -9 x -4

f'(x)= - 9 x 4

Ableiten mit Wurzeln

Beispiel:

Berechne die Ableitung von f mit f(x)= 3 2 x und vereinfache:

Lösung einblenden

f(x)= 3 2 x

= 3 2 x 1 2

=> f'(x) = 3 4 x - 1 2

f'(x)= 3 4 x

Ableiten an Punkt mit Parameter (ration. Exp.)

Beispiel:

Für welches t hat die Steigung der Tangente an den Graph von ft mit ft(x)= 4 t sin( x ) -5x im Punkt ( -π |ft( -π )) den Wert -21 ?

Lösung einblenden

f(x)= 16 t sin( x ) -5x

=>f'(x)= 16 t cos( x ) -5

Jetzt setzen wir x = -π in die Ableitungsfunktion f' ein:

= 16 t cos( ( -π ) ) -5
= 16 t ( -1 ) -5
= -16 t -5

Dieser Wert soll ja den Wert -21 besitzen, also gilt:

-4t -5 = -21 | +5
-4t = -16 |:(-4 )
t = 4

Steigungswinkel

Beispiel:

Berechne den Steigungswinkel der Tangente an den Graphen von f mit f(x)= 3 2 x 2 -3x im Punkt P(2|f(2)):

Lösung einblenden

Um den Steigungswinkel zu berechnen brauchen wir zuerst einmal die Tangentensteigung im Punkt P(2|f(2)).

Dazu leiten wir f erst ab und setzen dann x = 2 in die Ableitungsfunktion ein:

f(x)= 3 2 x 2 -3x

=>f'(x)= 3x -3

f'(2) = 32 -3 = 6 -3 = 3

Für den Steigungswinkel α einer Geraden mit Steigung m gilt:

tan(α) = m.

Also können wir den Steigungswinkel α berechnen mit:

α = arctan(m) = arctan(f'(2)) = arctan( 3 )) ≈ 71.6°.

Steigungswinkel rückwärts

Beispiel:

In einem Punkt B(x0|f(x0)) wird eine Tangente mit dem Steigungswinkel α ≈ -45° an den Graph der Funktion f mit f(x)= 3 4 x 4 +80x -7 angelegt.

Bestimme x0.

Lösung einblenden

Wenn der Steigungswinkel α = -45° ist, muss die Steigung dieser Tangente m = tan(-45°) ≈ -1 betragen.

Wir suchen also die Stelle x0, an der die Steigung der Tangente m = -1 ist.

Die Steigung der Tangente an einer Stelle x0 können wir ja aber mit m = f'(x0) berechnen, also muss f'(x0) = -1 gelten.

Wir leiten somit f mit f(x)= 3 4 x 4 +80x -7 ab:

f'(x) = 3 x 3 +80

Es muss gelten:

3 x 3 +80 = -1 | -80
3 x 3 = -81 |:3
x 3 = -27 | 3
x = - 27 3 = -3

Die gesuchte Stelle ist somit x0 ≈ -3.

Steigungswinkel rückwärts (Param.)

Beispiel:

Begründe, dass der Graph der Funktion ft mit ft(x)= -3 x 2 + 1 25 t x für jedes t durch den Ursprung verläuft.

Für welches ganzzahlige t beträgt der Steigungswinkel des Graphen von ft im Ursprung ungefähr 21.8 ° ?

Lösung einblenden

ft(0) = 0, also verläuft der Graph von ft für jedes t durch den Ursprung O(0|0).

Für den Steigungswinkel α gilt ja:

tan(α)=m = Gegenkathete Ankathete = y-Zuwachs x-Zuwachs

Wenn also im Ursprung der Steigungswinkel 21.8 ° beträgt, muss für die Steigung im Ursprung gelten:

m = tan(21.8°) ≈ 0.4

Dieses m können wir ja aber auch in Abhängigkeit von t mit der Ableitungsfunktion ft' bei x=0 berechnen:

f(x)= -3 x 2 + 1 25 t x

=>f'(x)= -6x + 1 25 t

Jetzt setzen wir x = 0 in die Ableitungsfunktion f' ein:

f'(0) = -60 + 1 25 t
= 1 25 t

Dieser Wert soll ja ungefähr 0.4 betragen, also gilt:

1 25 t = 0,4 |⋅ 25
t = 10

Als ganzzahligen Wert können wir somit t = 10 nehmen.

Schnittwinkel zweier Kurven

Beispiel:

Die Graphen der beiden Funktionen f und g mit f(x)= x 2 -6x +11 und g(x)= - x 2 -4x +23 schneiden sich in zwei Punkten. Berechne den Schnittwinkel der beiden Graphen im Schnittpunkt mit dem positiven x-Wert.

Lösung einblenden

Um die Schnittpunkte zu berechnen, müssen wir einfach die beiden Funktionsterme gleichsetzen:

x 2 -6x +11 = - x 2 -4x +23 | + x 2 +4x -23
2 x 2 -2x -12 = 0 |:2

x 2 - x -6 = 0

eingesetzt in die Mitternachtsformel (a-b-c-Formel):

x1,2 = +1 ± ( -1 ) 2 -4 · 1 · ( -6 ) 21

x1,2 = +1 ± 1 +24 2

x1,2 = +1 ± 25 2

x1 = 1 + 25 2 = 1 +5 2 = 6 2 = 3

x2 = 1 - 25 2 = 1 -5 2 = -4 2 = -2

L={ -2 ; 3 }

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Um den Schnittwinkel zu berechnen brauchen wir zuerst die Steigungswinkel der beiden Graphen im Schnittpunkt S( 3 |f( 3 )).

Dazu leiten wir die beiden Funktionen ab und setzen den x-Wert des Schnittpunkts x = 3 in die Ableitungen ein um die Tangentensteigungen zu erhalten:

f'(x)= 2x -6 , also gilt mf = f'( 3 )= 23 -6 = 0

g'(x)= -2x -4 , also gilt mg = g'( 3 )= -23 -4 = -10

Mit den Tangentensteigungen kann man nun die Steigungswinkel dieser Tangenten mit der Formel tan(α) = m = y-Zuwachs x-Zuwachs

Somit gilt für den Steigungswinkel von f in S( 3 |f( 3 )): α = arctan(0) ≈ 0°

und für den Steigungswinkel von g in S( 3 |g( 3 )) gilt: β = arctan( -10 ) ≈ -84.3°

An der Skizze erkennt man schnell, dass man den Schnittwinkel als den Betrag der Differenz der beiden Steigungswinkel berechnen kann.

γ = |α - β| = |0° - ( - 84.3 )°| ≈ 84.3°