nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit, im grünen Bereich zu landen, bei p=0,3. Es wird 50 mal gedreht. Bestimme die Wahrscheinlichkeit des folgenden Ereignisses:Von den ersten 15 Versuchen landen genau 3 Versuche im grünen Bereich und von den restlichen Versuchen wird mindestens 11 mal auf grün gedreht.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 15 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Drehungen die im grünen Bereich landen an. X ist binomialverteilt mit n=15 und p=0.3.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.315 (X=3) ≈ 0.17.

Analog betrachten wir nun die restlichen 35 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Drehungen die im grünen Bereich landen an. Y ist binomialverteilt mit n=35 und p=0.3.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.335 (Y11) = 1- P0.335 (Y10) ≈ 0.49.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.315 (X=3) P0.335 (Y11) = 0.17 ⋅ 0.49 ≈ 0.0833

zwei unabhängige Binom.

Beispiel:

Beim Torwandschießen muss man immer 3 mal rechts unten und dann 3 mal links oben versuchen zu treffen. Ein Fußballspieler hat unten ein Trefferwahrscheinlichkeit von 50% und oben 20%. Wie groß ist die Wahrscheinlichkeit, dass er insgesamt 3 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von genau 3 kommen kann:

  • 0 mal unten und 3 mal oben
  • 1 mal unten und 2 mal oben
  • 2 mal unten und 1 mal oben
  • 3 mal unten und 0 mal oben

0 mal unten und 3 mal oben

Die Wahrscheinlichkeit für 0 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=0) = ( 3 0 ) 0.50 0.53 ≈ 0.125
Die Wahrscheinlichkeit für 3 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=3) = ( 3 3 ) 0.23 0.80 ≈ 0.008
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.125 ⋅ 0.008 = 0.001

1 mal unten und 2 mal oben

Die Wahrscheinlichkeit für 1 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=1) = ( 3 1 ) 0.51 0.52 ≈ 0.375
Die Wahrscheinlichkeit für 2 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=2) = ( 3 2 ) 0.22 0.81 ≈ 0.096
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.375 ⋅ 0.096 = 0.036

2 mal unten und 1 mal oben

Die Wahrscheinlichkeit für 2 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=2) = ( 3 2 ) 0.52 0.51 ≈ 0.375
Die Wahrscheinlichkeit für 1 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=1) = ( 3 1 ) 0.21 0.82 ≈ 0.384
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.375 ⋅ 0.384 = 0.144

3 mal unten und 0 mal oben

Die Wahrscheinlichkeit für 3 mal unten ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.5.

P0.53 (X=3) = ( 3 3 ) 0.53 0.50 ≈ 0.125
Die Wahrscheinlichkeit für 0 mal oben ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=3 und p=0.2.

P0.23 (X=0) = ( 3 0 ) 0.20 0.83 ≈ 0.512
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p4=0.125 ⋅ 0.512 = 0.064


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 4 Kombinationen addiert:

0.001 + 0.036 + 0.144 + 0.064 = 0.245

feste Reihenfolge im Binomialkontext

Beispiel:

7 Würfel werden gleichzeitig geworfen und liegen dann anschließend in einer Reihe. Bestimme die Wahrscheinlichkeit, dass dabei genau 5 Sechser gewürfelt werden und die alle direkt nebeneinander liegen.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 5 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ( 7 5 ) ( 1 6 ) 5 ( 5 6 ) 2

Dabei gibt ja ( 1 6 ) 5 ( 5 6 ) 2 die Wahrscheinlichkeit eines bestimmten Pfads mit 5 Treffer und 2 Nicht-Treffern und ( 7 5 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 7 5 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXXXOO

OXXXXXO

OOXXXXX

Es gibt also genau 3 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 3 ⋅ ( 1 6 ) 5 ( 5 6 ) 2 ≈ 0.0003

Kombination Binom.-Baumdiagramm

Beispiel:

Ein fernöstlicher LED-Hersteller hat Probleme in der Qualitätssicherung, so dass 7% seiner Leuchtmittel defekt sind. Diese werden in Kartons a 50 Stück verpackt. Ein Großhändler öffnet testweise zwei Kartons der Lieferung und prüft die darin enthaltenen Leuchtmittel. Nur wenn in keiner der Packungen mehr als 4 Stück defekt sind nimmt er die Lieferung an. Wie hoch ist die Wahrscheinlichkeit, dass er die Lieferung annimmt?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'kiste ok'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 4 Treffer bei 50 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.07, also P0.0750 (X4)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=50 und p=0.07.

P0.0750 (X4) = P0.0750 (X=0) + P0.0750 (X=1) + P0.0750 (X=2) +... + P0.0750 (X=4) = 0.72902690999887 ≈ 0.729
(TI-Befehl: binomcdf(50,0.07,4))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'kiste ok' (p=0.729) und 'nicht ok'(p=0.271).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'nicht ok'

EreignisP
kiste ok -> kiste ok0,5314
kiste ok -> nicht ok0,1976
nicht ok -> kiste ok0,1976
nicht ok -> nicht ok0,0734

Einzel-Wahrscheinlichkeiten: kiste ok: 0,729; nicht ok: 0,271;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'kiste ok'-'kiste ok' (P=0,5314)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,5314 = 0,5314