nach Aufgabentypen suchen

Aufgabentypen anhand von Beispielen durchstöbern

Browserfenster aktualisieren (F5), um neue Beispiele bei den Aufgabentypen zu sehen

Binomialvert. mit variablem n (mind)

Beispiel:

Die Firma Apple hat ein neues geniales Produkt, die iYacht, auf den Markt gebracht (wenn auch nicht ganz günstig). Die hierfür beauftragte Marketingagentur garantiert, dass unter denen, denen sie die Yacht vorgeführt hat, der Anteil der späteren Käufer bei 16% liegt. Wie vielen Personen muss nun dieses Produkt vorgeführt werden, damit sich mit mind. 80% Wahrscheinlichkeit, 33 oder mehr Käufer für dieses Produkt finden?

Lösung einblenden
nP(X≤k)
......
2280.2392
2290.2305
2300.2221
2310.2138
2320.2058
2330.198
......

Die Zufallsgröße X gibt Anzahl der Käufer an und ist im Idealfall binomialverteilt mit p = 0.16 und variablem n.

Es muss gelten: P0.16n (X33) ≥ 0.8

Weil man ja aber P0.16n (X33) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P0.16n (X33) = 1 - P0.16n (X32) ≥ 0.8 |+ P0.16n (X32) - 0.8

0.2 ≥ P0.16n (X32) oder P0.16n (X32) ≤ 0.2

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 16% der Versuche mit einem Treffer. Also müssten dann doch bei 33 0.16 ≈ 206 Versuchen auch ungefähr 33 (≈0.16⋅206) Treffer auftreten.

Wir berechnen also mit unserem ersten n=206:
P0.16n (X32) ≈ 0.4737 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.2 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.2 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=233 die gesuchte Wahrscheinlichkeit unter 0.2 ist.

n muss also mindestens 233 sein, damit P0.16n (X32) ≤ 0.2 oder eben P0.16n (X33) ≥ 0.8 gilt.

Binomialvert. mit variablem n (mind)

Beispiel:

Wie oft muss man mit einem normalen Würfel mindestens würfeln, um mit einer Wahrscheinlichkeit von mindestens 90% 36 oder mehr 6er zu erzielen?

Lösung einblenden
nP(X≤k)
......
2540.1235
2550.1181
2560.1128
2570.1078
2580.1029
2590.0982
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X36) ≥ 0.9

Weil man ja aber P 1 6 n (X36) nicht in den WTR eingeben kann, müssen wir diese Wahrscheinlichkeit über die Gegenwahrscheinlichkeit berechnen:

P 1 6 n (X36) = 1 - P 1 6 n (X35) ≥ 0.9 |+ P 1 6 n (X35) - 0.9

0.1 ≥ P 1 6 n (X35) oder P 1 6 n (X35) ≤ 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 36 1 6 ≈ 216 Versuchen auch ungefähr 36 (≈ 1 6 ⋅216) Treffer auftreten.

Wir berechnen also mit unserem ersten n=216:
P 1 6 n (X35) ≈ 0.4717 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.1 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.1 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass erstmals bei n=259 die gesuchte Wahrscheinlichkeit unter 0.1 ist.

n muss also mindestens 259 sein, damit P 1 6 n (X35) ≤ 0.1 oder eben P 1 6 n (X36) ≥ 0.9 gilt.

Binomialvert. mit variablem n (höchst.)

Beispiel:

Wie oft darf man mit einem normalen Würfel höchstens würfeln, um mit einer Wahrscheinlichkeit von mindestens 70% nicht mehr als 36 6er zu würfeln?

Lösung einblenden
nP(X≤k)
......
2020.7088
2030.6977
2040.6864
2050.6751
2060.6636
2070.652
2080.6403
2090.6285
2100.6166
2110.6047
2120.5927
2130.5806
2140.5686
2150.5565
2160.5444
......

Die Zufallsgröße X gibt Anzahl der gewürfelten 6er an und ist im Idealfall binomialverteilt mit p = 1 6 und variablem n.

Es muss gelten: P 1 6 n (X36) ≥ 0.7

Jetzt müssen wir eben so lange mit verschiedenen Werten von n probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei stellt sich nun natürlich die Frage, mit welchem Wert für n wir dabei beginnen. Im Normalfall enden 1 6 der Versuche mit einem Treffer. Also müssten dann doch bei 36 1 6 ≈ 216 Versuchen auch ungefähr 36 (≈ 1 6 ⋅216) Treffer auftreten.

Wir berechnen also mit unserem ersten n=216:
P 1 6 n (X36) ≈ 0.5444 (TI-Befehl: Binomialcdf ...)

Je nachdem, wie weit nun dieser Wert noch von den gesuchten 0.7 entfernt ist, erhöhen bzw. verkleinern wir das n eben in größeren oder kleineren Schrittweiten.

Dies wiederholen wir solange, bis wir zwei aufeinanderfolgende Werte von n gefunden haben, bei denen die 0.7 überschritten wird.

Aus der Werte-Tabelle (siehe links) erkennt man dann, dass letztmals bei n=202 die gesuchte Wahrscheinlichkeit über 70% ist.

Binomialvert. mit variablem p (diskret) für WTR

Beispiel:

Eine Firma, die Überraschungseier vertreibt, möchte als Werbegag manche Eier mit Superfiguren bestücken. Aus Angst vor Kundenbeschwerden sollen in einer 7er-Packung mit der mindestens 75% Wahrscheinlichkeit 2 oder mehr Superfiguren enthalten sein. Wenn in jedes n-te Ei eine Superfigur rein soll, wie groß darf dann n höchstens sein?

Lösung einblenden
pP(X≥2)=1-P(X≤1)
......
1 2 0.9375
1 3 0.7366
......

Die Zufallsgröße X gibt die Anzahl der Eier mit einer Superfigur an. X ist binomialverteilt mit n=7 und unbekanntem Parameter p.

Es muss gelten: Pp7 (X2) = 1- Pp7 (X1) = 0.75 (oder mehr)

Wir wissen, dass der Zähler bei unserer Einzelwahrscheinlichkeit p 1 sein muss, da es ja genau einen günstigen Fall gibt.

Wir müssen nun bei verschiedenen Nennern untersuchen, wie hoch die gesuchte Wahrscheinlichkeit Pp7 (X2) ('mindestens 2 Treffer bei 7 Versuchen') bei diesen Nennern wird (siehe Tabelle links)

Als Startwert wählen wir als p= 1 2 .

In dieser Tabelle erkennen wir, dass letztmals bei der Einzelwahrscheinlichkeit p= 1 2 die gesuchte Wahrscheinlichkeit über 75% bleibt.
Der Nenner, also die das wievielte Ei eine Superfigur enthält, darf also höchstens 2 sein.

Binomialvert. mit variablem k (höchst.)

Beispiel:

Bei einem Zufallsexperiment beträgt die Wahrscheinlichkeit für einen Treffer p=0,35. Das Zufallsexperiment soll 57 mal wiederholt werden. Dabei soll die Wahrscheinlichkeit, dass von den 57 Versuchen höchstens k Treffer sind, weniger als 55% betragen. Bestimme den größtmöglichen Wert für k.

Lösung einblenden
kP(X≤k)
......
140.0623
150.1066
160.1693
170.2507
180.3481
190.4558
200.566
210.6705
220.7626
230.838
......

Die Zufallsgröße X gibt Anzahl der Treffer an und ist im Idealfall binomialverteilt mit p = 0.35 und n = 57.

Es muss gelten: P0.3557 (Xk) < 0.55

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 19 immer noch weniger als 0.55 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.3557 (X20) nimmt mit 56.6% einen Wert über 0.55 an.

Das größtmögliche k mit P0.3557 (Xk) < 0.55 ist somit k = 19.

größtmöglicher Wert für k muss somit k = 19 sein.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (mind.)

Beispiel:

Bei einer Wurfbude ist die Wahrscheinlichkeit einen Ball in einen Eimer zu treffen bei ca. 11%. Für einen bestimmten Betrag darf man 12 mal werfen. Wenn man dabei eine bestimmte Mindestanzahl von Treffern k erzielt, bekommt man einen Hauptpreis. Wie hoch muss man k mindestens setzen, damit der Hauptpreis nur mit einer Wahrscheinlichkeit von höchstens 7% ausgegeben werden muss?

Lösung einblenden
kP(X≤k)
00.247
10.6133
20.8623
30.9649
40.9935
50.9991
60.9999
71
......

Die Zufallsgröße X gibt die Anzahl der getroffenenen Bälle an und ist im Idealfall binomialverteilt mit p = 0.11 und n = 12.

Es muss gelten: P0.1112 (Xk) < 0.07 (oranger Bereich)

oder andersrum ausgedrückt: P0.1112 (Xk-1) ≥ 0.93 (blauer Bereich)

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 2 immer noch weniger als 0.93 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1112 (X3) nimmt mit 96.49% einen Wert über 0.93 an.

Das kleinstmögliche k mit P0.1112 (Xk) = 1 - P0.1112 (Xk-1) < 0.07 ist somit k = 4.

Die Mindestanzahl der getroffenenen Bälle muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)

Binomialvert. mit variablem k (höchst.)

Beispiel:

Mitarbeiter:innen einer Firma müssen eine Maschine bedienen, die mit einer Wahrscheinlichkeit von 14% ein fehlerhaftes Teil produziert. Jede Mitarbeiter:in produziert jeden Monat 60 Teile. Als Gag möchte die Geschäftsführung den Mitarbeiter:innen einen kleines Geschenk machen, deren Maschnine nicht mehr als eine bestimmte Anzahl an fehlerhaften Teilen produziert hat. Dabei soll aber die Wahrscheinlichkeit, ein Geschenk zu bekommen, bei höchstens 10% liegen. Wie viele fehlerhaften Teile dürfen somit höchstens produziert werden, um ein Geschenk zu bekommen?

Lösung einblenden
kP(X≤k)
00.0001
10.0013
20.0068
30.0241
40.0643
50.1377
60.2471
70.3846
80.5328
......

Die Zufallsgröße X gibt die Anzahl der fehlerhaften Teile an und ist im Idealfall binomialverteilt mit p = 0.14 und n = 60.

Es muss gelten: P0.1460 (Xk) < 0.1

Jetzt müssen wir eben so lange mit verschiedenen Werten von k probieren, bis diese Gleichung erstmals nicht mehr erfüllt wird:

Dabei kann man entweder einfach viele verschiedene Werte einzeln berechnen oder man verwendet Listen bei der Binomialverteilung im WTR, (TI: binomcdf, Casio: Kumul. Binomial-V).

Schaut man dazu die kumulierte Binomialverteilung in der Tabelle links an, so erkennt man, dass die Trefferzahlen im Intervall zwischen 0 und 4 immer noch weniger als 0.1 der Gesamt-Wahrscheinlichkeit auf sich vereinen. Erst P0.1460 (X5) nimmt mit 13.77% einen Wert über 0.1 an.

Das größtmögliche k mit P0.1460 (Xk) < 0.1 ist somit k = 4.

Die Maximalanzahl der fehlerhaften Teile für ein Geschenk muss somit k = 4 sein.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Die Höhen der Säulen entsprechen der Wahrscheinlichkeit für genau X=k Treffer
(also keine kumulierte Wahrscheinlichkeit wie links in der Tabelle)